diff --git a/Rnotebook-rigcounts.html b/Rnotebook-rigcounts.html
new file mode 100644
index 0000000000000000000000000000000000000000..5106d03a45d2e421adab0ac6f142ea466b9ce6ac
--- /dev/null
+++ b/Rnotebook-rigcounts.html
@@ -0,0 +1,2519 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
THIS VERSION: 5.12.2024
+
+
Rig count data.
+
+
Weekly data 1.3.2017 to 28.3.2024
+
Explorative data analysis:
+
Number of observations is 365. The mean and variance of the data are:
+6.3945205 and 5.7944754.
+
plot(data1$AlaskaL, type="l")
+
+
forecast::Acf(data1$AlaskaL)
+
+
forecast::Pacf(data1$AlaskaL)
+
+
Are there quarterly seasonal effects?
+
Mean counts for quarters 1 to 4:
+
meanq1 <- mean(data1$AlaskaL[data1$Q1 == 1])
+meanq1
+
## [1] 7.988764
+
meanq2 <- mean(data1$AlaskaL[data1$Q2 == 1])
+meanq2
+
## [1] 6.076923
+
meanq3 <- mean(data1$AlaskaL[data1$Q3 == 1])
+meanq3
+
## [1] 5.608696
+
meanq4 <- mean(data1$AlaskaL[data1$Q4 == 1])
+meanq4
+
## [1] 5.956989
+
+
+
Specification 1:
+
I start with the specification used so far, i.e. with a linear trend
+and the Q1 dummy.
+
# preparations for regression analysis
+X1 <- data1$AlaskaL
+n1 <- length(X1)
+
+# generate trend variables and quarterly dummies
+trend_1 <- (1:n1 - n1/2) / n1
+const_1 <- rep(1, n1)
+
+q1_1 <- data1$Q1
+
Fitting a GP(2) model with trend and Q1-Dummy (log-link)
+
xreg_1_tq1 <- cbind(const_1, trend_1, q1_1 )
+
+
+fit_1_gp2tq1 <- cocoReg(order=2, type="GP", data=X1, xreg=xreg_1_tq1 , julia=T)
+
## Starting Julia ...
+
#fit_1_gp2tq1 <- cocoReg(order=2, type="GP", data=X1, xreg=xreg_1_tq1, link_function = "log" , julia=T)
+summary(fit_1_gp2tq1)
+
## Coefficients:
+## Estimate Std. Error t
+## alpha1 0.0515 0.0077 6.7128
+## alpha2 0.0190 0.0063 3.0179
+## alpha3 0.8758 0.0171 51.3371
+## eta 0.1972 0.0458 4.3111
+## const_1 -1.7628 0.1759 -10.0223
+## trend_1 -2.1621 0.4951 -4.3673
+## q1_1 0.7095 0.2823 2.5135
+##
+## Type: GP
+## Order: 2
+##
+## Log-likelihood: -455.7017
+
Evaluation of the fitted model:
+
boot <- cocoBoot(fit_1_gp2tq1, rep.Bootstrap=500, conf.alpha = 0.01, julia=TRUE)
+plot(boot)
+
+
pit <- cocoPit(fit_1_gp2tq1, julia=TRUE)
+plot(pit)
+
+
residuals <- cocoResid(fit_1_gp2tq1, val.num = 1e-10)
+mean(residuals$pe.resid)
+
## [1] 0.05874158
+
var(residuals$pe.resid)
+
## [1] 0.8029447
+
forecast::Acf(residuals$pe.resid)
+
+
plot(residuals$pe.resid,type="l")
+
+
The mean and variance of the Pearson residuals are: 0.0587416 and
+0.8029447.
+
Note, that the confidence level in the parametric bootstrap exercise
+was set to \(99\%\) in order to include
+the SACF of the data.
+
We concluded then, that despite the complex dynamics, this model is
+doing pretty ok.
+
Moving on to a one-step-ahead forecasting exercise:
+
k <- 1
+
+trendf <- ((n1+1):(n1+k) - n1/2) / n1 #adjusted to a vector
+q1f <- 0
+constf <- 1
+
+xcastk <- cbind(constf, trendf, q1f) #adjusted to create a matrix
+
+
+fc_1_gp2 <- predict(fit_1_gp2tq1,k=1, max=20, simulate_one_step_ahead = F, xcast=xcastk, julia=T)
+
+
+#k=1
+fc_1_gp2[[1]]$mode
+
## [1] 13
+
fc_1_gp2[[1]]$median
+
## [1] 13
+
plot(fc_1_gp2[[1]])
+
+
+
+
+
Specification 2:
+
Include a Dummy for quarter 3 to the above specification:
+
q3_1 <- data1$Q3
+
+xreg_1_tq1q3 <- cbind(const_1, trend_1, q1_1, q3_1 )
+
+
+fit_1_gp2tq1q3 <- cocoReg(order=2, type="GP", data=X1, xreg=xreg_1_tq1q3 , julia=T)
+
+summary(fit_1_gp2tq1q3)
+
## Coefficients:
+## Estimate Std. Error t
+## alpha1 0.0516 0.0077 6.7187
+## alpha2 0.0192 0.0063 3.0329
+## alpha3 0.8754 0.0171 51.2380
+## eta 0.1968 0.0458 4.2955
+## const_1 -1.7017 0.1990 -8.5514
+## trend_1 -2.1716 0.4958 -4.3799
+## q1_1 0.6474 0.2975 2.1761
+## q3_1 -0.1962 0.3158 -0.6213
+##
+## Type: GP
+## Order: 2
+##
+## Log-likelihood: -455.505
+
No real improvement. Do not pursue any further.
+
+
+
+
Specification 3:
+
I now try to include some intervention terms in the spirit of
+Liboschek et al JSS paper for the tscount package.
+
Data preparation:
+
#intervention dummies
+
+intv1_0 <- rep(0,158)
+intv1_1 <- rep(1,80)
+intv1_2 <- rep(0,127)
+intv_corona <- c(intv1_0,intv1_1,intv1_2)
+# a Covid19 Dummy covering the time span from mid April 2020 to end of Sept. 2021
+
+intv2_1 <- rep(0, 238)
+intv2_2 <- rep(1,127)
+intv2 <- c(intv2_1,intv2_2)
+# a Covid19 recovery dummy starting from Oktober 2021 up to the end of the data set
+
+xreg_1_tq1_i = cbind(const_1,q1_1,intv_corona, intv2)
+
+fit_1_gp2tq1_i <- cocoReg(order=2, type="GP", data=X1, xreg=xreg_1_tq1_i , julia=T, link_function = "log")
+
+summary(fit_1_gp2tq1_i)
+
## Coefficients:
+## Estimate Std. Error t
+## alpha1 0.0516 0.0080 6.4211
+## alpha2 0.0157 0.0067 2.3356
+## alpha3 0.8716 0.0185 47.1573
+## eta 0.1954 0.0461 4.2342
+## const_1 -0.8680 0.2160 -4.0186
+## q1_1 0.5802 0.2752 2.1082
+## intv_corona -1.3603 0.3739 -3.6385
+## intv2 -1.5686 0.3656 -4.2899
+##
+## Type: GP
+## Order: 2
+##
+## Log-likelihood: -451.5651
+
The usual diagnostic plots for this specification (note however, that
+the confidence level for the parametric bootstrap is 99%)
+
bootrci <- cocoBoot(fit_1_gp2tq1_i, conf.alpha = 0.01, julia=TRUE)
+plot(bootrci)
+
+
pitrci <- cocoPit(fit_1_gp2tq1_i, julia=TRUE)
+plot(pitrci)
+
+
residualsrci <- cocoResid(fit_1_gp2tq1_i, val.num = 1e-10)
+mean(residualsrci$pe.resid)
+
## [1] 0.07594969
+
var(residualsrci$pe.resid)
+
## [1] 0.7723266
+
acf_resrci <- forecast::Acf(residualsrci$pe.resid, lag = 25)
+
+
intv_coronaf <- 0
+intv2f <- 1
+
+xcastki <- cbind(constf, q1f, intv_coronaf, intv2f) #adjusted to create a matrix
+
+
+fc_1_gp2_i <- predict(fit_1_gp2tq1_i,k=1, simulate_one_step_ahead = F, xcast=xcastki, julia=T)
+
+
+#k=1
+fc_1_gp2_i[[1]]$mode
+
## [1] 13
+
fc_1_gp2_i[[1]]$median
+
## [1] 13
+
plot(fc_1_gp2_i[[1]])
+
+
+
+
+
Specification 4:
+
What about bringing back the trend term…
+
Data preparation:
+
trend_1 <- (1:n1 - n1/2) / n1
+#intervention dummies
+
+intv1_0 <- rep(0,158)
+intv1_1 <- rep(1,80)
+intv1_2 <- rep(0,127)
+intv_corona <- c(intv1_0,intv1_1,intv1_2)
+# a Covid19 Dummy covering the time span from mid April 2020 to end of Sept. 2021
+
+intv2_1 <- rep(0, 238)
+intv2_2 <- rep(1,127)
+intv2 <- c(intv2_1,intv2_2)
+# a Covid19 recovery dummy starting from Oktober 2021 up to the end of the data set
+
+xreg_1_tq1_it = cbind(const_1,q1_1,intv_corona, trend_1)
+
+fit_1_gp2tq1_it <- cocoReg(order=2, type="GP", data=X1, xreg=xreg_1_tq1_it , julia=T, link_function = "log")
+
+summary(fit_1_gp2tq1_it)
+
## Coefficients:
+## Estimate Std. Error t
+## alpha1 0.0497 0.0074 6.6845
+## alpha2 0.0176 0.0062 2.8191
+## alpha3 0.8785 0.0168 52.2651
+## eta 0.1945 0.0467 4.1635
+## const_1 -1.6018 0.1971 -8.1250
+## q1_1 0.6673 0.2852 2.3401
+## intv_corona -0.5984 0.3719 -1.6090
+## trend_1 -1.9307 0.4997 -3.8642
+##
+## Type: GP
+## Order: 2
+##
+## Log-likelihood: -454.2904
+
The usual diagnostic plots for this specification
+
bootrcit <- cocoBoot(fit_1_gp2tq1_it, conf.alpha = 0.01, julia=TRUE)
+plot(bootrcit)
+
+
pitrcit <- cocoPit(fit_1_gp2tq1_it, julia=TRUE)
+plot(pitrcit)
+
+
residualsrcit <- cocoResid(fit_1_gp2tq1_it, val.num = 1e-10)
+mean(residualsrcit$pe.resid)
+
## [1] 0.06364868
+
var(residualsrcit$pe.resid)
+
## [1] 0.8187228
+
acf_resrcit <- forecast::Acf(residualsrcit$pe.resid, lag = 25)
+
+
plot(residualsrcit$pe.resid,type="l")
+
+
Forecasting one-step-ahead
+
k <- 1
+
+trendf <- ((n1+1):(n1+k) - n1/2) / n1 #adjusted to a vector
+intv_coronaf <- 0
+
+
+xcastkit <- cbind(constf, q1f, intv_coronaf, trendf) #adjusted to create a matrix
+
+
+fc_1_gp2_it <- predict(fit_1_gp2tq1_i,k=1, simulate_one_step_ahead = F, xcast=xcastkit, julia=T)
+
+
+#k=1
+fc_1_gp2_it[[1]]$mode
+
## [1] 13
+
fc_1_gp2_it[[1]]$median
+
## [1] 13
+
plot(fc_1_gp2_it[[1]])
+
+
+
+
+
Specification 5:
+
Yet anther twist with the regressors: …
+
Data preparation:
+
trend_1 <- (1:n1 - n1/2) / n1
+#intervention dummies
+
+intv1_0 <- rep(0,158)
+intv1_1 <- rep(1,80)
+intv1_2 <- rep(0,127)
+intv_corona <- c(intv1_0,intv1_1,intv1_2)
+# a Covid19 Dummy covering the time span from mid April 2020 to end of Sept. 2021
+
+intv2_1 <- rep(0, 238)
+intv2_2 <- rep(1,127)
+intv2 <- c(intv2_1,intv2_2)
+# a Covid19 recovery dummy starting from Oktober 2021 up to the end of the data set
+
+xreg_1_tq1_it2 = cbind(const_1,q1_1,intv_corona, trend_1*intv2)
+
+fit_1_gp2tq1_it2 <- cocoReg(order=2, type="GP", data=X1, xreg=xreg_1_tq1_it2 , julia=T, link_function = "log")
+
+summary(fit_1_gp2tq1_it2)
+
## Coefficients:
+## Estimate Std. Error t
+## alpha1 0.0524 0.0080 6.5913
+## alpha2 0.0165 0.0068 2.4401
+## alpha3 0.8706 0.0179 48.5261
+## eta 0.1943 0.0454 4.2757
+## const_1 -0.9064 0.2106 -4.3039
+## q1_1 0.5907 0.2731 2.1626
+## intv_corona -1.3298 0.3733 -3.5625
+## -4.6805 1.0593 -4.4185
+##
+## Type: GP
+## Order: 2
+##
+## Log-likelihood: -451.6935
+
Diagnostic plots for this specification
+
bootrcit2 <- cocoBoot(fit_1_gp2tq1_it2, conf.alpha = 0.01, julia=TRUE)
+plot(bootrcit2)
+
+
pitrcit2 <- cocoPit(fit_1_gp2tq1_it2, julia=TRUE)
+plot(pitrcit2)
+
+
residualsrcit2 <- cocoResid(fit_1_gp2tq1_it2, val.num = 1e-10)
+mean(residualsrcit2$pe.resid)
+
## [1] 0.06974777
+
var(residualsrcit2$pe.resid)
+
## [1] 0.7680785
+
acf_resrcit2 <- forecast::Acf(residualsrcit2$pe.resid, lag = 25)
+
+
plot(residualsrcit2$pe.resid,type="l")
+
+
+
+
+
Specification 6:
+
Yet anther twist with the regressors: …
+
Data preparation:
+
trend_1 <- (1:n1 - n1/2) / n1
+#intervention dummies
+
+intv3_0 <- rep(0,158)
+intv3_1 <- rep(1,207)
+
+intv_corona2 <- c(intv3_0,intv3_1)
+# a Covid19 Dummy covering the time span from mid April 2020 to end of Sept. 2021
+
+intv2_1 <- rep(0, 238)
+intv2_2 <- rep(1,127)
+intv2 <- c(intv2_1,intv2_2)
+# a Covid19 recovery dummy starting from Oktober 2021 up to the end of the data set
+
+xreg_1_tq1_it3 = cbind(const_1,q1_1,intv_corona2)
+
+fit_1_gp2tq1_it3 <- cocoReg(order=2, type="GP", data=X1, xreg=xreg_1_tq1_it3 , julia=T, link_function = "log")
+
+summary(fit_1_gp2tq1_it3)
+
## Coefficients:
+## Estimate Std. Error t
+## alpha1 0.0507 0.0077 6.6253
+## alpha2 0.0155 0.0066 2.3406
+## alpha3 0.8736 0.0177 49.2499
+## eta 0.1949 0.0466 4.1835
+## const_1 -0.8693 0.2161 -4.0224
+## q1_1 0.5714 0.2762 2.0690
+## intv_corona2 -1.4707 0.2951 -4.9836
+##
+## Type: GP
+## Order: 2
+##
+## Log-likelihood: -451.6711
+
Diagnostic plots for this specification
+
bootrcit3 <- cocoBoot(fit_1_gp2tq1_it3, conf.alpha = 0.01, julia=TRUE)
+plot(bootrcit3)
+
+
pitrcit3 <- cocoPit(fit_1_gp2tq1_it3, julia=TRUE)
+plot(pitrcit3)
+
+
residualsrcit3 <- cocoResid(fit_1_gp2tq1_it3, val.num = 1e-10)
+mean(residualsrcit3$pe.resid)
+
## [1] 0.07573195
+
var(residualsrcit3$pe.resid)
+
## [1] 0.7845895
+
acf_resrcit2 <- forecast::Acf(residualsrcit2$pe.resid, lag = 25)
+
+
plot(residualsrcit2$pe.resid,type="l")
+
+
+
+
+
Summary
+
Table with scoring rule results for the data set 2017 to 2024 (not
+comprehensive)
+
rbind(Spez1 = cocoScore(fit_1_gp2tq1, julia = T), Spez3 = cocoScore(fit_1_gp2tq1_i), Spez4 = cocoScore(fit_1_gp2tq1_it))
+
## log.score quad.score rps.score
+## Spez1 1.255377 -0.4363836 0.4862753
+## Spez3 1.243981 -0.4439594 0.4841648
+## Spez4 1.251489 -0.437554 0.4854141
+
I think, I should try a different data span. Without the Covid19
+period.
+
+
+
+
Spezification (II.1) with dataset 2014 to 2020 (March to March)
+
data2 <- read_excel("rigcountsAlaskaL2014-20-march2march.xlsx")
+
Explorative data analysis:
+
Number of observations is 313. The mean and variance of the data are:
+7.7955272 and 6.6760056.
+
mean(data2$AlaskaL)
+
## [1] 7.795527
+
var(data2$AlaskaL)
+
## [1] 6.676006
+
plot(data2$AlaskaL, type="l")
+
+
forecast::Acf(data2$AlaskaL)
+
+
forecast::Pacf(data2$AlaskaL)
+
+
Are there quarterly seasonal effects?
+
Mean counts for quarters 1 to 4:
+
meanq1 <- mean(data2$AlaskaL[data2$Q1 == 1])
+meanq1
+
## [1] 9.220779
+
meanq2 <- mean(data2$AlaskaL[data2$Q2 == 1])
+meanq2
+
## [1] 7.743243
+
meanq3 <- mean(data2$AlaskaL[data2$Q3 == 1])
+meanq3
+
## [1] 6.73494
+
meanq4 <- mean(data2$AlaskaL[data2$Q4 == 1])
+meanq4
+
## [1] 7.56962
+
There is no need for a trend and the data seem to be slightly
+underdispersed. Preliminary tests show that the \(\eta\) parameter in the GPAR is not
+significantly different from zero. So I stick wit a PAR2 model and the
+Q1 Dummy.
+
# preparations for regression analysis
+X2 <- data2$AlaskaL
+n2 <- length(X2)
+
+# generate trend variables and quarterly dummies
+trend_2 <- (1:n2 - n2/2) / n2
+const_2 <- rep(1, n2)
+
+q1_2 <- data2$Q1
+
+
+
+xreg_2_q1 <- cbind(const_2, q1_2 )
+
Fitting a PAR(2) model with Q1-Dummy only (log-link):
+
fit_2_p2q1 <- cocoReg(order=2, type="Poisson", data=X2, xreg=xreg_2_q1, link_function = "log" , julia=T)
+
+summary(fit_2_p2q1)
+
## Coefficients:
+## Estimate Std. Error t
+## alpha1 0.1002 0.0131 7.6659
+## alpha2 0.0418 0.0125 3.3456
+## alpha3 0.7770 0.0227 34.1635
+## const_2 -0.6315 0.1752 -3.6037
+## q1_2 0.5375 0.1924 2.7942
+##
+## Type: Poisson
+## Order: 2
+##
+## Log-likelihood: -521.294
+
Evaluation of the fitted model:
+
boot <- cocoBoot(fit_2_p2q1, rep.Bootstrap=500, conf.alpha = 0.05, julia=TRUE)
+plot(boot)
+
+
pit <- cocoPit(fit_2_p2q1, julia=TRUE)
+plot(pit)
+
+
residuals <- cocoResid(fit_2_p2q1, val.num = 1e-10)
+mean(residuals$pe.resid)
+
## [1] 0.009020904
+
var(residuals$pe.resid)
+
## [1] 1.041562
+
forecast::Acf(residuals$pe.resid)
+
+
plot(residuals$pe.resid,type="l")
+
+
Forecasting one-step-ahead
+
constf2 <- 1
+q1f2 <- 0
+
+xcastk2 <- cbind(constf2, q1f2) #adjusted to create a matrix
+
+
+fc_2_p2 <- predict(fit_2_p2q1, k=1, simulate_one_step_ahead = F, xcast=xcastk2, julia=T)
+
+
+#k=1
+fc_2_p2[[1]]$mode
+
## [1] 9
+
fc_2_p2[[1]]$median
+
## [1] 9
+
plot(fc_2_p2[[1]])
+
+
+
+
+
Spezification II.1a an identiy link instead of the log link:
+
Fitting a PAR(2) model with Q1-Dummy only (relu-link):
+
Stopped this, as it did not converge.
+
+
+
+
Spezification II.2 mit seasonal components
+
# generate trend variables and quarterly dummies
+X2 <- data2$AlaskaL
+n2 <- length(X2)
+
+sin_x2 <- sin(2*pi*1:n2/52)
+cos_x2 <- cos(2*pi*1:n2/52)
+
+const_2 <- rep(1, n2)
+
+q1_2 <- data2$Q1
+
+xreg_2_q1har <- cbind(const_2, q1_2, sin_x2, cos_x2 )
+
Fitting a PAR(2) model with Q1-Dummy only (log-link)
+
fit_2_p2q1har <- cocoReg(order=2, type="Poisson", data=X2, xreg=xreg_2_q1har, link_function = "log" , julia=T)
+
+summary(fit_2_p2q1har)
+
## Coefficients:
+## Estimate Std. Error t
+## alpha1 0.0999 0.0130 7.6994
+## alpha2 0.0427 0.0125 3.4133
+## alpha3 0.7781 0.0226 34.3622
+## const_2 -0.7227 0.2025 -3.5685
+## q1_2 0.7897 0.3447 2.2912
+## sin_x2 0.0631 0.1713 0.3682
+## cos_x2 -0.2002 0.1982 -1.0100
+##
+## Type: Poisson
+## Order: 2
+##
+## Log-likelihood: -520.7641
+
Evaluation of the fitted model:
+
boot <- cocoBoot(fit_2_p2q1har, rep.Bootstrap=500, conf.alpha = 0.05, julia=TRUE)
+plot(boot)
+
+
pit <- cocoPit(fit_2_p2q1har, julia=TRUE)
+plot(pit)
+
+
residuals <- cocoResid(fit_2_p2q1har, val.num = 1e-10)
+mean(residuals$pe.resid)
+
## [1] 0.008739587
+
var(residuals$pe.resid)
+
## [1] 1.047478
+
forecast::Acf(residuals$pe.resid)
+
+
plot(residuals$pe.resid,type="l")
+
+
+
+
+
Spezification (II.3) with dataset 2014 to 2020 (March to March) and
+intervention
+
… of course, the intervention has no inferential background, just
+eyeballing…
+
# generate trend variables and quarterly dummies
+const_2 <- rep(1, n2)
+
+q1_2 <- data2$Q1
+
+intv2_1 <- rep(0,109)
+intv2_2 <- rep(1,204)
+interv <- c(intv2_1,intv2_2)
+
+xreg_2_q1i <- cbind(const_2, q1_2, interv )
+
Fitting a PAR(2) model with Q1-Dummy and intervention (log-link)
+
fit_2_p2q1i <- cocoReg(order=2, type="Poisson", data=X2, xreg=xreg_2_q1i, link_function = "log" , julia=T)
+
+summary(fit_2_p2q1i)
+
## Coefficients:
+## Estimate Std. Error t
+## alpha1 0.1035 0.0139 7.4571
+## alpha2 0.0427 0.0128 3.3460
+## alpha3 0.7714 0.0240 32.0969
+## const_2 -0.4724 0.2172 -2.1747
+## q1_2 0.5336 0.1910 2.7941
+## interv -0.2230 0.1927 -1.1573
+##
+## Type: Poisson
+## Order: 2
+##
+## Log-likelihood: -520.6517
+
The intervention dummy is not significant, but may help to improve
+the fit of the model as far as the dynamics is concerned.
+
Evaluation of the fitted model:
+
boot <- cocoBoot(fit_2_p2q1i, rep.Bootstrap=500, conf.alpha = 0.05, julia=TRUE)
+plot(boot)
+
+
pit <- cocoPit(fit_2_p2q1i, julia=TRUE)
+plot(pit)
+
+
residuals <- cocoResid(fit_2_p2q1i, val.num = 1e-10)
+mean(residuals$pe.resid)
+
## [1] 0.01108528
+
var(residuals$pe.resid)
+
## [1] 1.023794
+
forecast::Acf(residuals$pe.resid)
+
+
plot(residuals$pe.resid,type="l")
+
+
Looks all pretty ok to me.
+
Forecasting one-step-ahead
+
constf2i <- 1
+q1f2i <- 0
+intv2i <- 1
+
+xcastk2i <- cbind(constf2, q1f2, intv2i) #adjusted to create a matrix
+
+
+fc_2_p2i <- predict(fit_2_p2q1i,k=1, simulate_one_step_ahead = F, xcast=xcastk2i, julia=T)
+
+
+#k=1
+fc_2_p2i[[1]]$mode
+
## [1] 9
+
fc_2_p2i[[1]]$median
+
## [1] 9
+
plot(fc_2_p2i[[1]])
+
+
+
+
Spezification (II.4) with dataset 2014 to 2020 (March to March) and
+a simple trend
+
# generate trend variables and quarterly dummies
+trend_2 <- (1:n2 - n2/2) / n2
+
+const_2 <- rep(1, n2)
+
+q1_2 <- data2$Q1
+
+
+
+xreg_2_q1t <- cbind(const_2, trend_2, q1_2 )
+
Fitting a PAR(2) model with Q1-Dummy and trend (log-link)
+
fit_2_p2q1t <- cocoReg(order=2, type="Poisson", data=X2, xreg=xreg_2_q1t, link_function = "log" , julia=T)
+
+summary(fit_2_p2q1t)
+
## Coefficients:
+## Estimate Std. Error t
+## alpha1 0.1022 0.0136 7.5267
+## alpha2 0.0432 0.0127 3.3943
+## alpha3 0.7739 0.0235 32.9082
+## const_2 -0.6420 0.1762 -3.6442
+## trend_2 -0.2663 0.3363 -0.7918
+## q1_2 0.5549 0.1936 2.8662
+##
+## Type: Poisson
+## Order: 2
+##
+## Log-likelihood: -520.9809
+
Evaluation of the fitted model:
+
boot <- cocoBoot(fit_2_p2q1t, rep.Bootstrap=500, conf.alpha = 0.05, julia=TRUE)
+plot(boot)
+
+
pit <- cocoPit(fit_2_p2q1t, julia=TRUE)
+plot(pit)
+
+
residuals <- cocoResid(fit_2_p2q1t, val.num = 1e-10)
+mean(residuals$pe.resid)
+
## [1] 0.00979969
+
var(residuals$pe.resid)
+
## [1] 1.034343
+
forecast::Acf(residuals$pe.resid)
+
+
plot(residuals$pe.resid,type="l")
+
+
+
rbind(spec1 = cocoScore(fit_2_p2q1, julia=T), spec2 = cocoScore(fit_2_p2q1har, julia = T), spec3 = cocoScore(fit_2_p2q1i, julia = T), spec4=cocoScore(fit_2_p2q1t))
+
## log.score quad.score rps.score
+## spec1 1.676187 -0.2317115 0.7128052
+## spec2 1.674483 -0.2327295 0.7116199
+## spec3 1.674121 -0.2320096 0.7099365
+## spec4 1.67518 -0.2315345 0.7115837
+
All close together.
+
+
+
+
Spezification (III.3) with dataset 2013 to 2020 (March to
+March)
+
data3 <- read_excel("rigcountsAlaskaL2013-20-march2march.xlsx")
+#data2 <- read_excel("rigcountsAlaskaL2014-20-march2march.xlsx")
+
Explorative data analysis:
+
Number of observations is 365. The mean and variance of the data are:
+8.0465753 and 7.1709017.
+
mean(data3$AlaskaL)
+
## [1] 8.046575
+
var(data3$AlaskaL)
+
## [1] 7.170902
+
plot(data3$AlaskaL, type="l")
+
+
forecast::Acf(data3$AlaskaL)
+
+
forecast::Pacf(data3$AlaskaL)
+
+
Hm dependence looks even more pronounced… Try another data span…
+
+
+
+
Spezification (IV.1) with dataset 2016 to 2020 (March to March)
+
data4 <- read_excel("rigcountsAlaskaL2016-20-march2march.xlsx")
+
Explorative data analysis:
+
Number of observations is 209. The mean and variance of the data are:
+6.6124402 and 3.9884983.
+
The data are severely underdisperesed. I think, we should not pursue
+this here further.
+
mean(data4$AlaskaL)
+
## [1] 6.61244
+
var(data4$AlaskaL)
+
## [1] 3.988498
+
plot(data4$AlaskaL, type="l")
+
+
forecast::Acf(data4$AlaskaL)
+
+
forecast::Pacf(data4$AlaskaL)
+
+
Are there quarterly seasonal effects?
+
Mean counts for quarters 1 to 4:
+
meanq1 <- mean(data4$AlaskaL[data4$Q1 == 1])
+meanq1
+
## [1] 8.288462
+
meanq2 <- mean(data4$AlaskaL[data4$Q2 == 1])
+meanq2
+
## [1] 6.604167
+
meanq3 <- mean(data4$AlaskaL[data4$Q3 == 1])
+meanq3
+
## [1] 5.578947
+
meanq4 <- mean(data4$AlaskaL[data4$Q4 == 1])
+meanq4
+
## [1] 6.076923
+
There is no need for a trend and the data seem not overdispersed:
+
# preparations for regression analysis
+X4 <- data4$AlaskaL
+n4 <- length(X4)
+
+const_4 <- rep(1, n4)
+
+q1_4 <- data4$Q1
+
+
+xreg_4_q1 <- cbind(const_4, q1_4 )
+
Fitting a GPAR(2) model with Q1-Dummy only (log-link)
+
fit_4_p2q1 <- cocoReg(order=2, type="GP", data=X4, xreg=xreg_4_q1, link_function = "log" , julia=T)
+
+summary(fit_4_p2q1)
+
## Coefficients:
+## Estimate Std. Error t
+## alpha1 0.1210 0.0240 5.0445
+## alpha2 0.0590 0.0207 2.8543
+## alpha3 0.7352 0.0459 16.0286
+## eta 0.0171 0.0729 0.2349
+## const_4 -0.7770 0.2845 -2.7308
+## q1_4 0.6001 0.2424 2.4757
+##
+## Type: GP
+## Order: 2
+##
+## Log-likelihood: -343.0093
+
Evaluation of the fitted model:
+
boot <- cocoBoot(fit_4_p2q1, rep.Bootstrap=500, conf.alpha = 0.05, julia=TRUE)
+plot(boot)
+
+
pit <- cocoPit(fit_4_p2q1, julia=TRUE)
+plot(pit)
+
+
residuals <- cocoResid(fit_4_p2q1, val.num = 1e-10)
+mean(residuals$pe.resid)
+
## [1] 0.01748717
+
var(residuals$pe.resid)
+
## [1] 0.9975233
+
forecast::Acf(residuals$pe.resid)
+
+
plot(residuals$pe.resid,type="l")
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/Rnotebook-rigcounts.md b/Rnotebook-rigcounts.md
new file mode 100644
index 0000000000000000000000000000000000000000..7c0a0ba478998c36dc9e8febfe5a8a95c42e384d
--- /dev/null
+++ b/Rnotebook-rigcounts.md
@@ -0,0 +1,1163 @@
+THIS VERSION: 5.12.2024
+
+
+
+Rig count data.
+
+In this document I present analyses for different time spans of the
+data. I start with the time span 2017 to 2024, which we looked at during
+your visit to Hohenheim. I use different specifications, but argue in
+the end in favour of not including the after Covid19 period.
+
+Then I analyse the time span from 2014 to 2020. This turns out to be my
+favourite time span to be included into the JSS paper. Despite the fact
+that the second order SACF of the residuals is significant in the usual
+sense.
+
+Other time spans discussed here: 2013 to 2020 - the dependence is even
+more pronounced in this time span.
+
+Finally 2016 to 2020. Very short time period, very small sample size.
+Dynamics look very good, but the marignal underdispersion is
+considerable. I do not think, we should open this discussion here.
+
+# Weekly data 1.3.2017 to 28.3.2024
+
+**Explorative data analysis:**
+
+Number of observations is 365. The mean and variance of the data are:
+6.3945205 and 5.7944754.
+
+ plot(data1$AlaskaL, type="l")
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/2-1.png)
+
+ forecast::Acf(data1$AlaskaL)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/2-2.png)
+
+ forecast::Pacf(data1$AlaskaL)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/3-1.png)
+
+Are there quarterly seasonal effects?
+
+Mean counts for quarters 1 to 4:
+
+ meanq1 <- mean(data1$AlaskaL[data1$Q1 == 1])
+ meanq1
+
+ ## [1] 7.988764
+
+ meanq2 <- mean(data1$AlaskaL[data1$Q2 == 1])
+ meanq2
+
+ ## [1] 6.076923
+
+ meanq3 <- mean(data1$AlaskaL[data1$Q3 == 1])
+ meanq3
+
+ ## [1] 5.608696
+
+ meanq4 <- mean(data1$AlaskaL[data1$Q4 == 1])
+ meanq4
+
+ ## [1] 5.956989
+
+
+
+## Specification 1:
+
+I start with the specification used so far, i.e. with a linear trend and
+the Q1 dummy.
+
+ # preparations for regression analysis
+ X1 <- data1$AlaskaL
+ n1 <- length(X1)
+
+ # generate trend variables and quarterly dummies
+ trend_1 <- (1:n1 - n1/2) / n1
+ const_1 <- rep(1, n1)
+
+ q1_1 <- data1$Q1
+
+Fitting a GP(2) model with trend and Q1-Dummy (log-link)
+
+ xreg_1_tq1 <- cbind(const_1, trend_1, q1_1 )
+
+
+ fit_1_gp2tq1 <- cocoReg(order=2, type="GP", data=X1, xreg=xreg_1_tq1 , julia=T)
+
+ ## Starting Julia ...
+
+ #fit_1_gp2tq1 <- cocoReg(order=2, type="GP", data=X1, xreg=xreg_1_tq1, link_function = "log" , julia=T)
+ summary(fit_1_gp2tq1)
+
+ ## Coefficients:
+ ## Estimate Std. Error t
+ ## alpha1 0.0515 0.0077 6.7128
+ ## alpha2 0.0190 0.0063 3.0179
+ ## alpha3 0.8758 0.0171 51.3371
+ ## eta 0.1972 0.0458 4.3111
+ ## const_1 -1.7628 0.1759 -10.0223
+ ## trend_1 -2.1621 0.4951 -4.3673
+ ## q1_1 0.7095 0.2823 2.5135
+ ##
+ ## Type: GP
+ ## Order: 2
+ ##
+ ## Log-likelihood: -455.7017
+
+Evaluation of the fitted model:
+
+ boot <- cocoBoot(fit_1_gp2tq1, rep.Bootstrap=500, conf.alpha = 0.01, julia=TRUE)
+ plot(boot)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec1_eval-1.png)
+
+ pit <- cocoPit(fit_1_gp2tq1, julia=TRUE)
+ plot(pit)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec1_eval-2.png)
+
+ residuals <- cocoResid(fit_1_gp2tq1, val.num = 1e-10)
+ mean(residuals$pe.resid)
+
+ ## [1] 0.05874158
+
+ var(residuals$pe.resid)
+
+ ## [1] 0.8029447
+
+ forecast::Acf(residuals$pe.resid)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec1_eval-3.png)
+
+ plot(residuals$pe.resid,type="l")
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec1_eval-4.png)
+
+The mean and variance of the Pearson residuals are: 0.0587416 and
+0.8029447.
+
+Note, that the confidence level in the parametric bootstrap exercise was
+set to 99% in order to include the SACF of the data.
+
+We concluded then, that despite the complex dynamics, this model is
+doing pretty ok.
+
+Moving on to a one-step-ahead forecasting exercise:
+
+ k <- 1
+
+ trendf <- ((n1+1):(n1+k) - n1/2) / n1 #adjusted to a vector
+ q1f <- 0
+ constf <- 1
+
+ xcastk <- cbind(constf, trendf, q1f) #adjusted to create a matrix
+
+
+ fc_1_gp2 <- predict(fit_1_gp2tq1,k=1, max=20, simulate_one_step_ahead = F, xcast=xcastk, julia=T)
+
+
+ #k=1
+ fc_1_gp2[[1]]$mode
+
+ ## [1] 13
+
+ fc_1_gp2[[1]]$median
+
+ ## [1] 13
+
+ plot(fc_1_gp2[[1]])
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec1_f-1.png)
+
+
+
+## Specification 2:
+
+Include a Dummy for quarter 3 to the above specification:
+
+ q3_1 <- data1$Q3
+
+ xreg_1_tq1q3 <- cbind(const_1, trend_1, q1_1, q3_1 )
+
+
+ fit_1_gp2tq1q3 <- cocoReg(order=2, type="GP", data=X1, xreg=xreg_1_tq1q3 , julia=T)
+
+ summary(fit_1_gp2tq1q3)
+
+ ## Coefficients:
+ ## Estimate Std. Error t
+ ## alpha1 0.0516 0.0077 6.7187
+ ## alpha2 0.0192 0.0063 3.0329
+ ## alpha3 0.8754 0.0171 51.2380
+ ## eta 0.1968 0.0458 4.2955
+ ## const_1 -1.7017 0.1990 -8.5514
+ ## trend_1 -2.1716 0.4958 -4.3799
+ ## q1_1 0.6474 0.2975 2.1761
+ ## q3_1 -0.1962 0.3158 -0.6213
+ ##
+ ## Type: GP
+ ## Order: 2
+ ##
+ ## Log-likelihood: -455.505
+
+No real improvement. Do not pursue any further.
+
+
+
+## Specification 3:
+
+I now try to include some intervention terms in the spirit of Liboschek
+et al JSS paper for the tscount package.
+
+Data preparation:
+
+ #intervention dummies
+
+ intv1_0 <- rep(0,158)
+ intv1_1 <- rep(1,80)
+ intv1_2 <- rep(0,127)
+ intv_corona <- c(intv1_0,intv1_1,intv1_2)
+ # a Covid19 Dummy covering the time span from mid April 2020 to end of Sept. 2021
+
+ intv2_1 <- rep(0, 238)
+ intv2_2 <- rep(1,127)
+ intv2 <- c(intv2_1,intv2_2)
+ # a Covid19 recovery dummy starting from Oktober 2021 up to the end of the data set
+
+ xreg_1_tq1_i = cbind(const_1,q1_1,intv_corona, intv2)
+
+ fit_1_gp2tq1_i <- cocoReg(order=2, type="GP", data=X1, xreg=xreg_1_tq1_i , julia=T, link_function = "log")
+
+ summary(fit_1_gp2tq1_i)
+
+ ## Coefficients:
+ ## Estimate Std. Error t
+ ## alpha1 0.0516 0.0080 6.4211
+ ## alpha2 0.0157 0.0067 2.3356
+ ## alpha3 0.8716 0.0185 47.1573
+ ## eta 0.1954 0.0461 4.2342
+ ## const_1 -0.8680 0.2160 -4.0186
+ ## q1_1 0.5802 0.2752 2.1082
+ ## intv_corona -1.3603 0.3739 -3.6385
+ ## intv2 -1.5686 0.3656 -4.2899
+ ##
+ ## Type: GP
+ ## Order: 2
+ ##
+ ## Log-likelihood: -451.5651
+
+The usual diagnostic plots for this specification (note however, that
+the confidence level for the parametric bootstrap is 99%)
+
+ bootrci <- cocoBoot(fit_1_gp2tq1_i, conf.alpha = 0.01, julia=TRUE)
+ plot(bootrci)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec3_eval-1.png)
+
+ pitrci <- cocoPit(fit_1_gp2tq1_i, julia=TRUE)
+ plot(pitrci)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec3_eval-2.png)
+
+ residualsrci <- cocoResid(fit_1_gp2tq1_i, val.num = 1e-10)
+ mean(residualsrci$pe.resid)
+
+ ## [1] 0.07594969
+
+ var(residualsrci$pe.resid)
+
+ ## [1] 0.7723266
+
+ acf_resrci <- forecast::Acf(residualsrci$pe.resid, lag = 25)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec3_eval-3.png)
+
+ intv_coronaf <- 0
+ intv2f <- 1
+
+ xcastki <- cbind(constf, q1f, intv_coronaf, intv2f) #adjusted to create a matrix
+
+
+ fc_1_gp2_i <- predict(fit_1_gp2tq1_i,k=1, simulate_one_step_ahead = F, xcast=xcastki, julia=T)
+
+
+ #k=1
+ fc_1_gp2_i[[1]]$mode
+
+ ## [1] 13
+
+ fc_1_gp2_i[[1]]$median
+
+ ## [1] 13
+
+ plot(fc_1_gp2_i[[1]])
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec3_f-1.png)
+
+
+
+## Specification 4:
+
+What about bringing back the trend term…
+
+Data preparation:
+
+ trend_1 <- (1:n1 - n1/2) / n1
+ #intervention dummies
+
+ intv1_0 <- rep(0,158)
+ intv1_1 <- rep(1,80)
+ intv1_2 <- rep(0,127)
+ intv_corona <- c(intv1_0,intv1_1,intv1_2)
+ # a Covid19 Dummy covering the time span from mid April 2020 to end of Sept. 2021
+
+ intv2_1 <- rep(0, 238)
+ intv2_2 <- rep(1,127)
+ intv2 <- c(intv2_1,intv2_2)
+ # a Covid19 recovery dummy starting from Oktober 2021 up to the end of the data set
+
+ xreg_1_tq1_it = cbind(const_1,q1_1,intv_corona, trend_1)
+
+ fit_1_gp2tq1_it <- cocoReg(order=2, type="GP", data=X1, xreg=xreg_1_tq1_it , julia=T, link_function = "log")
+
+ summary(fit_1_gp2tq1_it)
+
+ ## Coefficients:
+ ## Estimate Std. Error t
+ ## alpha1 0.0497 0.0074 6.6845
+ ## alpha2 0.0176 0.0062 2.8191
+ ## alpha3 0.8785 0.0168 52.2651
+ ## eta 0.1945 0.0467 4.1635
+ ## const_1 -1.6018 0.1971 -8.1250
+ ## q1_1 0.6673 0.2852 2.3401
+ ## intv_corona -0.5984 0.3719 -1.6090
+ ## trend_1 -1.9307 0.4997 -3.8642
+ ##
+ ## Type: GP
+ ## Order: 2
+ ##
+ ## Log-likelihood: -454.2904
+
+The usual diagnostic plots for this specification
+
+ bootrcit <- cocoBoot(fit_1_gp2tq1_it, conf.alpha = 0.01, julia=TRUE)
+ plot(bootrcit)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec4_eval-1.png)
+
+ pitrcit <- cocoPit(fit_1_gp2tq1_it, julia=TRUE)
+ plot(pitrcit)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec4_eval-2.png)
+
+ residualsrcit <- cocoResid(fit_1_gp2tq1_it, val.num = 1e-10)
+ mean(residualsrcit$pe.resid)
+
+ ## [1] 0.06364868
+
+ var(residualsrcit$pe.resid)
+
+ ## [1] 0.8187228
+
+ acf_resrcit <- forecast::Acf(residualsrcit$pe.resid, lag = 25)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec4_eval-3.png)
+
+ plot(residualsrcit$pe.resid,type="l")
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec4_eval-4.png)
+
+Forecasting one-step-ahead
+
+ k <- 1
+
+ trendf <- ((n1+1):(n1+k) - n1/2) / n1 #adjusted to a vector
+ intv_coronaf <- 0
+
+
+ xcastkit <- cbind(constf, q1f, intv_coronaf, trendf) #adjusted to create a matrix
+
+
+ fc_1_gp2_it <- predict(fit_1_gp2tq1_i,k=1, simulate_one_step_ahead = F, xcast=xcastkit, julia=T)
+
+
+ #k=1
+ fc_1_gp2_it[[1]]$mode
+
+ ## [1] 13
+
+ fc_1_gp2_it[[1]]$median
+
+ ## [1] 13
+
+ plot(fc_1_gp2_it[[1]])
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec4_f-1.png)
+
+
+
+## Specification 5:
+
+Yet anther twist with the regressors: …
+
+Data preparation:
+
+ trend_1 <- (1:n1 - n1/2) / n1
+ #intervention dummies
+
+ intv1_0 <- rep(0,158)
+ intv1_1 <- rep(1,80)
+ intv1_2 <- rep(0,127)
+ intv_corona <- c(intv1_0,intv1_1,intv1_2)
+ # a Covid19 Dummy covering the time span from mid April 2020 to end of Sept. 2021
+
+ intv2_1 <- rep(0, 238)
+ intv2_2 <- rep(1,127)
+ intv2 <- c(intv2_1,intv2_2)
+ # a Covid19 recovery dummy starting from Oktober 2021 up to the end of the data set
+
+ xreg_1_tq1_it2 = cbind(const_1,q1_1,intv_corona, trend_1*intv2)
+
+ fit_1_gp2tq1_it2 <- cocoReg(order=2, type="GP", data=X1, xreg=xreg_1_tq1_it2 , julia=T, link_function = "log")
+
+ summary(fit_1_gp2tq1_it2)
+
+ ## Coefficients:
+ ## Estimate Std. Error t
+ ## alpha1 0.0524 0.0080 6.5913
+ ## alpha2 0.0165 0.0068 2.4401
+ ## alpha3 0.8706 0.0179 48.5261
+ ## eta 0.1943 0.0454 4.2757
+ ## const_1 -0.9064 0.2106 -4.3039
+ ## q1_1 0.5907 0.2731 2.1626
+ ## intv_corona -1.3298 0.3733 -3.5625
+ ## -4.6805 1.0593 -4.4185
+ ##
+ ## Type: GP
+ ## Order: 2
+ ##
+ ## Log-likelihood: -451.6935
+
+Diagnostic plots for this specification
+
+ bootrcit2 <- cocoBoot(fit_1_gp2tq1_it2, conf.alpha = 0.01, julia=TRUE)
+ plot(bootrcit2)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec5_eval-1.png)
+
+ pitrcit2 <- cocoPit(fit_1_gp2tq1_it2, julia=TRUE)
+ plot(pitrcit2)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec5_eval-2.png)
+
+ residualsrcit2 <- cocoResid(fit_1_gp2tq1_it2, val.num = 1e-10)
+ mean(residualsrcit2$pe.resid)
+
+ ## [1] 0.06974777
+
+ var(residualsrcit2$pe.resid)
+
+ ## [1] 0.7680785
+
+ acf_resrcit2 <- forecast::Acf(residualsrcit2$pe.resid, lag = 25)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec5_eval-3.png)
+
+ plot(residualsrcit2$pe.resid,type="l")
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec5_eval-4.png)
+
+
+
+## Specification 6:
+
+Yet anther twist with the regressors: …
+
+Data preparation:
+
+ trend_1 <- (1:n1 - n1/2) / n1
+ #intervention dummies
+
+ intv3_0 <- rep(0,158)
+ intv3_1 <- rep(1,207)
+
+ intv_corona2 <- c(intv3_0,intv3_1)
+ # a Covid19 Dummy covering the time span from mid April 2020 to end of Sept. 2021
+
+ intv2_1 <- rep(0, 238)
+ intv2_2 <- rep(1,127)
+ intv2 <- c(intv2_1,intv2_2)
+ # a Covid19 recovery dummy starting from Oktober 2021 up to the end of the data set
+
+ xreg_1_tq1_it3 = cbind(const_1,q1_1,intv_corona2)
+
+ fit_1_gp2tq1_it3 <- cocoReg(order=2, type="GP", data=X1, xreg=xreg_1_tq1_it3 , julia=T, link_function = "log")
+
+ summary(fit_1_gp2tq1_it3)
+
+ ## Coefficients:
+ ## Estimate Std. Error t
+ ## alpha1 0.0507 0.0077 6.6253
+ ## alpha2 0.0155 0.0066 2.3406
+ ## alpha3 0.8736 0.0177 49.2499
+ ## eta 0.1949 0.0466 4.1835
+ ## const_1 -0.8693 0.2161 -4.0224
+ ## q1_1 0.5714 0.2762 2.0690
+ ## intv_corona2 -1.4707 0.2951 -4.9836
+ ##
+ ## Type: GP
+ ## Order: 2
+ ##
+ ## Log-likelihood: -451.6711
+
+Diagnostic plots for this specification
+
+ bootrcit3 <- cocoBoot(fit_1_gp2tq1_it3, conf.alpha = 0.01, julia=TRUE)
+ plot(bootrcit3)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec6_eval-1.png)
+
+ pitrcit3 <- cocoPit(fit_1_gp2tq1_it3, julia=TRUE)
+ plot(pitrcit3)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec6_eval-2.png)
+
+ residualsrcit3 <- cocoResid(fit_1_gp2tq1_it3, val.num = 1e-10)
+ mean(residualsrcit3$pe.resid)
+
+ ## [1] 0.07573195
+
+ var(residualsrcit3$pe.resid)
+
+ ## [1] 0.7845895
+
+ acf_resrcit2 <- forecast::Acf(residualsrcit2$pe.resid, lag = 25)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec6_eval-3.png)
+
+ plot(residualsrcit2$pe.resid,type="l")
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec6_eval-4.png)
+
+# Summary
+
+Table with scoring rule results for the data set 2017 to 2024 (not
+comprehensive)
+
+ rbind(Spez1 = cocoScore(fit_1_gp2tq1, julia = T), Spez3 = cocoScore(fit_1_gp2tq1_i), Spez4 = cocoScore(fit_1_gp2tq1_it))
+
+ ## log.score quad.score rps.score
+ ## Spez1 1.255377 -0.4363836 0.4862753
+ ## Spez3 1.243981 -0.4439594 0.4841648
+ ## Spez4 1.251489 -0.437554 0.4854141
+
+I think, I should try a different data span. Without the Covid19 period.
+
+
+
+# Spezification (II.1) with dataset 2014 to 2020 (March to March)
+
+ data2 <- read_excel("rigcountsAlaskaL2014-20-march2march.xlsx")
+
+**Explorative data analysis:**
+
+Number of observations is 313. The mean and variance of the data are:
+7.7955272 and 6.6760056.
+
+ mean(data2$AlaskaL)
+
+ ## [1] 7.795527
+
+ var(data2$AlaskaL)
+
+ ## [1] 6.676006
+
+ plot(data2$AlaskaL, type="l")
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/8-1.png)
+
+ forecast::Acf(data2$AlaskaL)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/8-2.png)
+
+ forecast::Pacf(data2$AlaskaL)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/8-3.png)
+
+Are there quarterly seasonal effects?
+
+Mean counts for quarters 1 to 4:
+
+ meanq1 <- mean(data2$AlaskaL[data2$Q1 == 1])
+ meanq1
+
+ ## [1] 9.220779
+
+ meanq2 <- mean(data2$AlaskaL[data2$Q2 == 1])
+ meanq2
+
+ ## [1] 7.743243
+
+ meanq3 <- mean(data2$AlaskaL[data2$Q3 == 1])
+ meanq3
+
+ ## [1] 6.73494
+
+ meanq4 <- mean(data2$AlaskaL[data2$Q4 == 1])
+ meanq4
+
+ ## [1] 7.56962
+
+There is no need for a trend and the data seem to be slightly
+underdispersed. Preliminary tests show that the *η* parameter in the
+GPAR is not significantly different from zero. So I stick wit a PAR2
+model and the Q1 Dummy.
+
+ # preparations for regression analysis
+ X2 <- data2$AlaskaL
+ n2 <- length(X2)
+
+ # generate trend variables and quarterly dummies
+ trend_2 <- (1:n2 - n2/2) / n2
+ const_2 <- rep(1, n2)
+
+ q1_2 <- data2$Q1
+
+
+
+ xreg_2_q1 <- cbind(const_2, q1_2 )
+
+Fitting a PAR(2) model with Q1-Dummy only (log-link):
+
+ fit_2_p2q1 <- cocoReg(order=2, type="Poisson", data=X2, xreg=xreg_2_q1, link_function = "log" , julia=T)
+
+ summary(fit_2_p2q1)
+
+ ## Coefficients:
+ ## Estimate Std. Error t
+ ## alpha1 0.1002 0.0131 7.6659
+ ## alpha2 0.0418 0.0125 3.3456
+ ## alpha3 0.7770 0.0227 34.1635
+ ## const_2 -0.6315 0.1752 -3.6037
+ ## q1_2 0.5375 0.1924 2.7942
+ ##
+ ## Type: Poisson
+ ## Order: 2
+ ##
+ ## Log-likelihood: -521.294
+
+Evaluation of the fitted model:
+
+ boot <- cocoBoot(fit_2_p2q1, rep.Bootstrap=500, conf.alpha = 0.05, julia=TRUE)
+ plot(boot)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec1_eval-1.png)
+
+ pit <- cocoPit(fit_2_p2q1, julia=TRUE)
+ plot(pit)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec1_eval-2.png)
+
+ residuals <- cocoResid(fit_2_p2q1, val.num = 1e-10)
+ mean(residuals$pe.resid)
+
+ ## [1] 0.009020904
+
+ var(residuals$pe.resid)
+
+ ## [1] 1.041562
+
+ forecast::Acf(residuals$pe.resid)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec1_eval-3.png)
+
+ plot(residuals$pe.resid,type="l")
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec1_eval-4.png)
+
+Forecasting one-step-ahead
+
+ constf2 <- 1
+ q1f2 <- 0
+
+ xcastk2 <- cbind(constf2, q1f2) #adjusted to create a matrix
+
+
+ fc_2_p2 <- predict(fit_2_p2q1, k=1, simulate_one_step_ahead = F, xcast=xcastk2, julia=T)
+
+
+ #k=1
+ fc_2_p2[[1]]$mode
+
+ ## [1] 9
+
+ fc_2_p2[[1]]$median
+
+ ## [1] 9
+
+ plot(fc_2_p2[[1]])
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec1_f-1.png)
+
+
+
+# Spezification II.1a an identiy link instead of the log link:
+
+Fitting a PAR(2) model with Q1-Dummy only (relu-link):
+
+Stopped this, as it did not converge.
+
+
+
+# Spezification II.2 mit seasonal components
+
+ # generate trend variables and quarterly dummies
+ X2 <- data2$AlaskaL
+ n2 <- length(X2)
+
+ sin_x2 <- sin(2*pi*1:n2/52)
+ cos_x2 <- cos(2*pi*1:n2/52)
+
+ const_2 <- rep(1, n2)
+
+ q1_2 <- data2$Q1
+
+ xreg_2_q1har <- cbind(const_2, q1_2, sin_x2, cos_x2 )
+
+Fitting a PAR(2) model with Q1-Dummy only (log-link)
+
+ fit_2_p2q1har <- cocoReg(order=2, type="Poisson", data=X2, xreg=xreg_2_q1har, link_function = "log" , julia=T)
+
+ summary(fit_2_p2q1har)
+
+ ## Coefficients:
+ ## Estimate Std. Error t
+ ## alpha1 0.0999 0.0130 7.6994
+ ## alpha2 0.0427 0.0125 3.4133
+ ## alpha3 0.7781 0.0226 34.3622
+ ## const_2 -0.7227 0.2025 -3.5685
+ ## q1_2 0.7897 0.3447 2.2912
+ ## sin_x2 0.0631 0.1713 0.3682
+ ## cos_x2 -0.2002 0.1982 -1.0100
+ ##
+ ## Type: Poisson
+ ## Order: 2
+ ##
+ ## Log-likelihood: -520.7641
+
+Evaluation of the fitted model:
+
+ boot <- cocoBoot(fit_2_p2q1har, rep.Bootstrap=500, conf.alpha = 0.05, julia=TRUE)
+ plot(boot)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec2_eval-1.png)
+
+ pit <- cocoPit(fit_2_p2q1har, julia=TRUE)
+ plot(pit)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec2_eval-2.png)
+
+ residuals <- cocoResid(fit_2_p2q1har, val.num = 1e-10)
+ mean(residuals$pe.resid)
+
+ ## [1] 0.008739587
+
+ var(residuals$pe.resid)
+
+ ## [1] 1.047478
+
+ forecast::Acf(residuals$pe.resid)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec2_eval-3.png)
+
+ plot(residuals$pe.resid,type="l")
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec2_eval-4.png)
+
+
+
+# Spezification (II.3) with dataset 2014 to 2020 (March to March) and intervention
+
+… of course, the intervention has no inferential background, just
+eyeballing…
+
+ # generate trend variables and quarterly dummies
+ const_2 <- rep(1, n2)
+
+ q1_2 <- data2$Q1
+
+ intv2_1 <- rep(0,109)
+ intv2_2 <- rep(1,204)
+ interv <- c(intv2_1,intv2_2)
+
+ xreg_2_q1i <- cbind(const_2, q1_2, interv )
+
+Fitting a PAR(2) model with Q1-Dummy and intervention (log-link)
+
+ fit_2_p2q1i <- cocoReg(order=2, type="Poisson", data=X2, xreg=xreg_2_q1i, link_function = "log" , julia=T)
+
+ summary(fit_2_p2q1i)
+
+ ## Coefficients:
+ ## Estimate Std. Error t
+ ## alpha1 0.1035 0.0139 7.4571
+ ## alpha2 0.0427 0.0128 3.3460
+ ## alpha3 0.7714 0.0240 32.0969
+ ## const_2 -0.4724 0.2172 -2.1747
+ ## q1_2 0.5336 0.1910 2.7941
+ ## interv -0.2230 0.1927 -1.1573
+ ##
+ ## Type: Poisson
+ ## Order: 2
+ ##
+ ## Log-likelihood: -520.6517
+
+The intervention dummy is not significant, but may help to improve the
+fit of the model as far as the dynamics is concerned.
+
+Evaluation of the fitted model:
+
+ boot <- cocoBoot(fit_2_p2q1i, rep.Bootstrap=500, conf.alpha = 0.05, julia=TRUE)
+ plot(boot)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec3_eval-1.png)
+
+ pit <- cocoPit(fit_2_p2q1i, julia=TRUE)
+ plot(pit)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec3_eval-2.png)
+
+ residuals <- cocoResid(fit_2_p2q1i, val.num = 1e-10)
+ mean(residuals$pe.resid)
+
+ ## [1] 0.01108528
+
+ var(residuals$pe.resid)
+
+ ## [1] 1.023794
+
+ forecast::Acf(residuals$pe.resid)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec3_eval-3.png)
+
+ plot(residuals$pe.resid,type="l")
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec3_eval-4.png)
+
+Looks all pretty ok to me.
+
+Forecasting one-step-ahead
+
+ constf2i <- 1
+ q1f2i <- 0
+ intv2i <- 1
+
+ xcastk2i <- cbind(constf2, q1f2, intv2i) #adjusted to create a matrix
+
+
+ fc_2_p2i <- predict(fit_2_p2q1i,k=1, simulate_one_step_ahead = F, xcast=xcastk2i, julia=T)
+
+
+ #k=1
+ fc_2_p2i[[1]]$mode
+
+ ## [1] 9
+
+ fc_2_p2i[[1]]$median
+
+ ## [1] 9
+
+ plot(fc_2_p2i[[1]])
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec3_f-1.png)
+
+# Spezification (II.4) with dataset 2014 to 2020 (March to March) and a simple trend
+
+ # generate trend variables and quarterly dummies
+ trend_2 <- (1:n2 - n2/2) / n2
+
+ const_2 <- rep(1, n2)
+
+ q1_2 <- data2$Q1
+
+
+
+ xreg_2_q1t <- cbind(const_2, trend_2, q1_2 )
+
+Fitting a PAR(2) model with Q1-Dummy and trend (log-link)
+
+ fit_2_p2q1t <- cocoReg(order=2, type="Poisson", data=X2, xreg=xreg_2_q1t, link_function = "log" , julia=T)
+
+ summary(fit_2_p2q1t)
+
+ ## Coefficients:
+ ## Estimate Std. Error t
+ ## alpha1 0.1022 0.0136 7.5267
+ ## alpha2 0.0432 0.0127 3.3943
+ ## alpha3 0.7739 0.0235 32.9082
+ ## const_2 -0.6420 0.1762 -3.6442
+ ## trend_2 -0.2663 0.3363 -0.7918
+ ## q1_2 0.5549 0.1936 2.8662
+ ##
+ ## Type: Poisson
+ ## Order: 2
+ ##
+ ## Log-likelihood: -520.9809
+
+Evaluation of the fitted model:
+
+ boot <- cocoBoot(fit_2_p2q1t, rep.Bootstrap=500, conf.alpha = 0.05, julia=TRUE)
+ plot(boot)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec4_eval-1.png)
+
+ pit <- cocoPit(fit_2_p2q1t, julia=TRUE)
+ plot(pit)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec4_eval-2.png)
+
+ residuals <- cocoResid(fit_2_p2q1t, val.num = 1e-10)
+ mean(residuals$pe.resid)
+
+ ## [1] 0.00979969
+
+ var(residuals$pe.resid)
+
+ ## [1] 1.034343
+
+ forecast::Acf(residuals$pe.resid)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec4_eval-3.png)
+
+ plot(residuals$pe.resid,type="l")
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec4_eval-4.png)
+
+
+
+ rbind(spec1 = cocoScore(fit_2_p2q1, julia=T), spec2 = cocoScore(fit_2_p2q1har, julia = T), spec3 = cocoScore(fit_2_p2q1i, julia = T), spec4=cocoScore(fit_2_p2q1t))
+
+ ## log.score quad.score rps.score
+ ## spec1 1.676187 -0.2317115 0.7128052
+ ## spec2 1.674483 -0.2327295 0.7116199
+ ## spec3 1.674121 -0.2320096 0.7099365
+ ## spec4 1.67518 -0.2315345 0.7115837
+
+All close together.
+
+
+
+# Spezification (III.3) with dataset 2013 to 2020 (March to March)
+
+ data3 <- read_excel("rigcountsAlaskaL2013-20-march2march.xlsx")
+ #data2 <- read_excel("rigcountsAlaskaL2014-20-march2march.xlsx")
+
+**Explorative data analysis:**
+
+Number of observations is 365. The mean and variance of the data are:
+8.0465753 and 7.1709017.
+
+ mean(data3$AlaskaL)
+
+ ## [1] 8.046575
+
+ var(data3$AlaskaL)
+
+ ## [1] 7.170902
+
+ plot(data3$AlaskaL, type="l")
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/13-1.png)
+
+ forecast::Acf(data3$AlaskaL)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/13-2.png)
+
+ forecast::Pacf(data3$AlaskaL)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/13-3.png)
+
+Hm dependence looks even more pronounced… Try another data span…
+
+
+
+# Spezification (IV.1) with dataset 2016 to 2020 (March to March)
+
+ data4 <- read_excel("rigcountsAlaskaL2016-20-march2march.xlsx")
+
+**Explorative data analysis:**
+
+Number of observations is 209. The mean and variance of the data are:
+6.6124402 and 3.9884983.
+
+The data are severely underdisperesed. I think, we should not pursue
+this here further.
+
+ mean(data4$AlaskaL)
+
+ ## [1] 6.61244
+
+ var(data4$AlaskaL)
+
+ ## [1] 3.988498
+
+ plot(data4$AlaskaL, type="l")
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/15-1.png)
+
+ forecast::Acf(data4$AlaskaL)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/15-2.png)
+
+ forecast::Pacf(data4$AlaskaL)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/15-3.png)
+
+Are there quarterly seasonal effects?
+
+Mean counts for quarters 1 to 4:
+
+ meanq1 <- mean(data4$AlaskaL[data4$Q1 == 1])
+ meanq1
+
+ ## [1] 8.288462
+
+ meanq2 <- mean(data4$AlaskaL[data4$Q2 == 1])
+ meanq2
+
+ ## [1] 6.604167
+
+ meanq3 <- mean(data4$AlaskaL[data4$Q3 == 1])
+ meanq3
+
+ ## [1] 5.578947
+
+ meanq4 <- mean(data4$AlaskaL[data4$Q4 == 1])
+ meanq4
+
+ ## [1] 6.076923
+
+There is no need for a trend and the data seem not overdispersed:
+
+ # preparations for regression analysis
+ X4 <- data4$AlaskaL
+ n4 <- length(X4)
+
+ const_4 <- rep(1, n4)
+
+ q1_4 <- data4$Q1
+
+
+ xreg_4_q1 <- cbind(const_4, q1_4 )
+
+Fitting a GPAR(2) model with Q1-Dummy only (log-link)
+
+ fit_4_p2q1 <- cocoReg(order=2, type="GP", data=X4, xreg=xreg_4_q1, link_function = "log" , julia=T)
+
+ summary(fit_4_p2q1)
+
+ ## Coefficients:
+ ## Estimate Std. Error t
+ ## alpha1 0.1210 0.0240 5.0445
+ ## alpha2 0.0590 0.0207 2.8543
+ ## alpha3 0.7352 0.0459 16.0286
+ ## eta 0.0171 0.0729 0.2349
+ ## const_4 -0.7770 0.2845 -2.7308
+ ## q1_4 0.6001 0.2424 2.4757
+ ##
+ ## Type: GP
+ ## Order: 2
+ ##
+ ## Log-likelihood: -343.0093
+
+Evaluation of the fitted model:
+
+ boot <- cocoBoot(fit_4_p2q1, rep.Bootstrap=500, conf.alpha = 0.05, julia=TRUE)
+ plot(boot)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data4_spec1_eval-1.png)
+
+ pit <- cocoPit(fit_4_p2q1, julia=TRUE)
+ plot(pit)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data4_spec1_eval-2.png)
+
+ residuals <- cocoResid(fit_4_p2q1, val.num = 1e-10)
+ mean(residuals$pe.resid)
+
+ ## [1] 0.01748717
+
+ var(residuals$pe.resid)
+
+ ## [1] 0.9975233
+
+ forecast::Acf(residuals$pe.resid)
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data4_spec1_eval-3.png)
+
+ plot(residuals$pe.resid,type="l")
+
+![](Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data4_spec1_eval-4.png)
+
+
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/13-1.png b/Rnotebook-rigcounts_files/figure-markdown_strict/13-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..69034b6abf9a23a77f04f6c94016f4cc4265763b
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/13-1.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/13-2.png b/Rnotebook-rigcounts_files/figure-markdown_strict/13-2.png
new file mode 100644
index 0000000000000000000000000000000000000000..67e8d5d60588c5a4c52bbd96ed836192feea0fd1
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/13-2.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/13-3.png b/Rnotebook-rigcounts_files/figure-markdown_strict/13-3.png
new file mode 100644
index 0000000000000000000000000000000000000000..34fe7c9f323ec57c70ba9465af5abc269f4636aa
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/13-3.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/15-1.png b/Rnotebook-rigcounts_files/figure-markdown_strict/15-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..9cce825efc86ae839ff3a70a507729594a541588
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/15-1.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/15-2.png b/Rnotebook-rigcounts_files/figure-markdown_strict/15-2.png
new file mode 100644
index 0000000000000000000000000000000000000000..16a227943dc5fae1e6ada7e223c8e66e8457715b
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/15-2.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/15-3.png b/Rnotebook-rigcounts_files/figure-markdown_strict/15-3.png
new file mode 100644
index 0000000000000000000000000000000000000000..993ec4b2e985d0c6c40a93ab623e26ed7b57a53d
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/15-3.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/2-1.png b/Rnotebook-rigcounts_files/figure-markdown_strict/2-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..767fe9b0c58ae5603c3ca8f911f064c36daaf441
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/2-1.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/2-2.png b/Rnotebook-rigcounts_files/figure-markdown_strict/2-2.png
new file mode 100644
index 0000000000000000000000000000000000000000..aa36ea53972a580d124be808c75d11f760df5580
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/2-2.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/3-1.png b/Rnotebook-rigcounts_files/figure-markdown_strict/3-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..a3630612f972a7e01d62fa0efa06ba479e9a09f4
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/3-1.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/8-1.png b/Rnotebook-rigcounts_files/figure-markdown_strict/8-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..0948f9cb9fafa0b7949cef41e2b48a43785ac230
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/8-1.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/8-2.png b/Rnotebook-rigcounts_files/figure-markdown_strict/8-2.png
new file mode 100644
index 0000000000000000000000000000000000000000..cee1132951364c7813e85fd7b2cf0b792f500ea8
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/8-2.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/8-3.png b/Rnotebook-rigcounts_files/figure-markdown_strict/8-3.png
new file mode 100644
index 0000000000000000000000000000000000000000..37b483ffdd97d4709ce280833c831c716574ee3e
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/8-3.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec1_eval-1.png b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec1_eval-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..152d9086479e4f135dc99c7f310dfdeb57f99556
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec1_eval-1.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec1_eval-2.png b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec1_eval-2.png
new file mode 100644
index 0000000000000000000000000000000000000000..3c7ec51350490686a51364b5b60638f83fc79b00
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec1_eval-2.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec1_eval-3.png b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec1_eval-3.png
new file mode 100644
index 0000000000000000000000000000000000000000..34f8e4afc4b904b8b9d24d058ab0161febcc9078
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec1_eval-3.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec1_eval-4.png b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec1_eval-4.png
new file mode 100644
index 0000000000000000000000000000000000000000..b181fb892d76fdcee2509738d3e6189ae87945a4
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec1_eval-4.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec1_f-1.png b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec1_f-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..99204f800468d8c9ce55bc78d669a74adf021891
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec1_f-1.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec3_eval-1.png b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec3_eval-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..5430e98f1fc4b54a49d40085ca2b1cd538908d13
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec3_eval-1.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec3_eval-2.png b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec3_eval-2.png
new file mode 100644
index 0000000000000000000000000000000000000000..b3b978af60bc57df35a9b2c17810fe69aabd2a58
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec3_eval-2.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec3_eval-3.png b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec3_eval-3.png
new file mode 100644
index 0000000000000000000000000000000000000000..d60c384f42462704c135dfa71b9e20d2e301e850
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec3_eval-3.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec3_f-1.png b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec3_f-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..c4e15fdc13ac1b9d027b9098b97c2e1d55f287f8
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec3_f-1.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec4_eval-1.png b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec4_eval-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..1f49d13a014dd224a0667c1359a0bf4848e16138
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec4_eval-1.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec4_eval-2.png b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec4_eval-2.png
new file mode 100644
index 0000000000000000000000000000000000000000..addcd887c7c743613ad63ce1ab014861cb0bf40f
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec4_eval-2.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec4_eval-3.png b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec4_eval-3.png
new file mode 100644
index 0000000000000000000000000000000000000000..f6784a40d4a1d7775a22b6972ac39222f1b955b6
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec4_eval-3.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec4_eval-4.png b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec4_eval-4.png
new file mode 100644
index 0000000000000000000000000000000000000000..d4bbbe5435b118a3a19af5c415a8acc00c91c2d1
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec4_eval-4.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec4_f-1.png b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec4_f-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..5af99b15b177c3b6a882138610d503704b62ef3e
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec4_f-1.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec5_eval-1.png b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec5_eval-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..38186d5fbed06290d7f781c38f8fdc6d87ac5bf1
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec5_eval-1.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec5_eval-2.png b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec5_eval-2.png
new file mode 100644
index 0000000000000000000000000000000000000000..11f6e1d5f214cc8f42e4bc54c35963cb80514e35
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec5_eval-2.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec5_eval-3.png b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec5_eval-3.png
new file mode 100644
index 0000000000000000000000000000000000000000..9fbe88ee2f534df5fb26d73c4bad056c0a318ecc
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec5_eval-3.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec5_eval-4.png b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec5_eval-4.png
new file mode 100644
index 0000000000000000000000000000000000000000..b7e452988c58a46f0474c16533edb8c298527db8
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec5_eval-4.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec6_eval-1.png b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec6_eval-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..961b75f05579429706847107b0f2f9a5526843f5
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec6_eval-1.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec6_eval-2.png b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec6_eval-2.png
new file mode 100644
index 0000000000000000000000000000000000000000..46eb4fe7bc81018e24f94e26ec64f027dd8f8821
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec6_eval-2.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec6_eval-3.png b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec6_eval-3.png
new file mode 100644
index 0000000000000000000000000000000000000000..9fbe88ee2f534df5fb26d73c4bad056c0a318ecc
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec6_eval-3.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec6_eval-4.png b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec6_eval-4.png
new file mode 100644
index 0000000000000000000000000000000000000000..b7e452988c58a46f0474c16533edb8c298527db8
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data1_spec6_eval-4.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data4_spec1_eval-1.png b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data4_spec1_eval-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..56e26f3edb3bd31266cbe88658f539da425edb4d
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data4_spec1_eval-1.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data4_spec1_eval-2.png b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data4_spec1_eval-2.png
new file mode 100644
index 0000000000000000000000000000000000000000..d31ba50cdd7f92e9476c3a2c97ea615d05e034ec
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data4_spec1_eval-2.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data4_spec1_eval-3.png b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data4_spec1_eval-3.png
new file mode 100644
index 0000000000000000000000000000000000000000..b89f46387394a2703d67d6e98bde63d5013cbbad
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data4_spec1_eval-3.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data4_spec1_eval-4.png b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data4_spec1_eval-4.png
new file mode 100644
index 0000000000000000000000000000000000000000..530da5d4adb1b283fc24aa754bad5c5c02080535
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/GP2_data4_spec1_eval-4.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec1_eval-1.png b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec1_eval-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..340c868052b5e76d3039a235e033a1ed13b680fb
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec1_eval-1.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec1_eval-2.png b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec1_eval-2.png
new file mode 100644
index 0000000000000000000000000000000000000000..f516d09d8ab7cd3afde6ca4452159bf32b8c6d69
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec1_eval-2.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec1_eval-3.png b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec1_eval-3.png
new file mode 100644
index 0000000000000000000000000000000000000000..f33e259011c23587302fb09ccc2bb8c847bcfdd7
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec1_eval-3.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec1_eval-4.png b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec1_eval-4.png
new file mode 100644
index 0000000000000000000000000000000000000000..cd5106a1a377860563e74f59aa71428442b8a0b8
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec1_eval-4.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec1_f-1.png b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec1_f-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..4ff9654f2dae3eb277103248dac24d714a98155f
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec1_f-1.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec2_eval-1.png b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec2_eval-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..8aa3891540076922455e68d20e3139c166c92ce4
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec2_eval-1.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec2_eval-2.png b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec2_eval-2.png
new file mode 100644
index 0000000000000000000000000000000000000000..aef6746275765f2eb9824e5929dcbd644ef49568
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec2_eval-2.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec2_eval-3.png b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec2_eval-3.png
new file mode 100644
index 0000000000000000000000000000000000000000..cd51afbcb2eea36ee86f035e05732c9b8728d1d3
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec2_eval-3.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec2_eval-4.png b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec2_eval-4.png
new file mode 100644
index 0000000000000000000000000000000000000000..ea17dd78aae733750bec25fd6c90feeea144591c
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec2_eval-4.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec3_eval-1.png b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec3_eval-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..92ca5fb112352d06ff777a6f118be6c8150f34f3
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec3_eval-1.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec3_eval-2.png b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec3_eval-2.png
new file mode 100644
index 0000000000000000000000000000000000000000..dd5bae5da20f4e18909295edd307eb8389ac74bb
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec3_eval-2.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec3_eval-3.png b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec3_eval-3.png
new file mode 100644
index 0000000000000000000000000000000000000000..8a25e28cb1a72992dc70ce1f261761979f5b5e29
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec3_eval-3.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec3_eval-4.png b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec3_eval-4.png
new file mode 100644
index 0000000000000000000000000000000000000000..c34a2926de65a5c36c3d59551c77218ef0d9df80
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec3_eval-4.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec3_f-1.png b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec3_f-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..68ae34ef68c448189e38e60cd208763dbe5d9839
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec3_f-1.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec4_eval-1.png b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec4_eval-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..22a68cedc738c3f044c100f4dae43a3fdab1f5c6
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec4_eval-1.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec4_eval-2.png b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec4_eval-2.png
new file mode 100644
index 0000000000000000000000000000000000000000..39bf3a16a0084ce9c77fc009ecfc78f7c09ab1e4
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec4_eval-2.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec4_eval-3.png b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec4_eval-3.png
new file mode 100644
index 0000000000000000000000000000000000000000..c0032760b78210837cbef98ee5093a52ab82d8b1
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec4_eval-3.png differ
diff --git a/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec4_eval-4.png b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec4_eval-4.png
new file mode 100644
index 0000000000000000000000000000000000000000..1bfba672e14b8bac3c9cdb564a4cc81cb80254fd
Binary files /dev/null and b/Rnotebook-rigcounts_files/figure-markdown_strict/P2_data2_spec4_eval-4.png differ