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Foundation Models
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Foundation Models

Goal: Models that generally understand and predict human language well. Conjecture: If

they are trained with sufficiently much data, they can work well for many possible tasks.

> Non-generative / representation transformers:
encoder-only models (e.g., BERT) aim to (only) find valuable latent text representations
(but could also generate text).

» Generative learners:
Decoder-only transformers (e.g., GPT) aim to do autoregressive text generation (but

also has valuable latent text representations).

» Generative Encoder-decoder transformers (e.g., BART) do both.
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Self-supervised Learning

1. Issue: We want to train a large model using supervised learning.
But how do we get the large amounts of data required for training?

2. ldea: Labels and the prediction target can be the text itself!
We can predict words from surrounding information, by masking words in the text.

3. Remaining setup:
> Model class f(x, 0): We use Transformers, which are easy to estimate and could work well
for language. But can be any model.

» Loss L is a multi-class classification loss for the masked words.
» The learning algorithm is e.g. gradient-based.

We turned a complex problem understanding human language into a multi-class prediction
problem with lots a labeled data.
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Random Masked Language Modelling
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https://www.researchgate.net/publication/349393574_A_survey_on_training_and_evaluation_of_word_embeddings

Random Masked Language Modelling - Details
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Random Masked Language Modelling - Details

1. One-hot encoded input sequence X € R’*V (or id vector)

2. 15% of input tokens are randomly masked (altered during training:
» 80% out of are set to to the special token [Mask]. These will be our prediction targets
later.

» Some are replaced by a different token.
3. Input embeddings map to E € R/*?

4. Transformer processes input embeddings to useful hidden representation Z € R/*¢
(keep dimension).

5. Mask token prediction for [Mask] tokens to the vocabulary v (excluding mask).
» 1-layer MLP for classification (linear layer and softmax).

» Z — P where P hot With dimension / x v.

6. In training, the loss propagates though the network, optimizing all trainable

nparameterc! 8/19



Causal Masking

A causal mask within the self-attention mechanism avoids tokens from influencing tokens

in the future.

» Key idea for (efficient) training of LMs.

» Next-word prediction uses a causal mask (decoders such as GPT). Bidirectional models
use a random mask (e.g.encoders such as BERT).
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https://github.com/rasbt/https://github.com/rasbt/LLMs-from-scratch

Remark: Dropout for Self-attention

Dropout means randomly setting some outputs to O during training (regularization).
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https://github.com/rasbt/https://github.com/rasbt/LLMs-from-scratch

Preparing Sequences for Next Word Prediction
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Figure adapted from “Build a Large Language Model From Scratch”

Source
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https://github.com/rasbt/LLMs-workshop-2024

Foundation Language Models
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Training Data

Any open-source easily accessible text data available is collected.
Epochs elapsed when
training for 300B tokens

Quantity Weight in
(tokens) training mix

Dataset

Common Crawl (filtered) 410 billion 60% 0.44
WebText2 19 billion 22% 2.9
Books1 12 billion 8% 1.9
Books2 55 billion 8% 0.43
Wikipedia 3 billion 3% 34

Example of GPT-3 training data, around 45 TB / 300 Billion tokens of text (Brown et al.,
2020). Weight impacts the number of times a sample is seen in training.
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Model Size is on the Rise
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https://medium.com/@harishdatalab/unveiling-the-power-of-large-language-models-llms-e235c4eba8a9

Computing Requirements and Power is on the Rise
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Peta-Flop days used for Model Training (Brown et al., 2020). 1 Peta-flop day is

approximately 3.2 days on a NVIDIA A100.
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Computing and Memory Aspects of LMs
Computing steps:
1. Tokenization
2. Forward pass (computed in parallel for each token)
3. Backward pass (computed in parallel for each token)
4. Parameter update
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Computing and Memory Aspects of LMs
Computing steps:
1. Tokenization
2. Forward pass (computed in parallel for each token)
3. Backward pass (computed in parallel for each token)
4. Parameter update

What elements are typically stored on the GPU?
Note: Example for BERT, to be tested empirically.
» The model: p parameters float32: 110Mil x 4 = 440MB

» Theinput data: N x [ x d, where N is the batch size. For pretraining uses
(N =256 x | = 512) = 128K tokens per batch.
» Data storage : 256 x 512 x 768 x 4bytes(float32) ~ 400.MB for input embedding.

» Storing activations in the network for backpropagation scales
» linearlyin N
» MLP-part linearly in /
» Attention part quadratically in /.
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How did LLMs Improve in the Past?

» More parameters (transformer blocks,
hidden dimensions, context size)

» More/better data

17/19


https://openlm.ai/chatbot-arena/
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://x.com/ai_memes

How did LLMs Improve in the Past?

» More parameters (transformer blocks,

hidden dimensions, context size)

More/better data

Different self-supervised tasks:
» Next sentence prediction

» Permuted language modelling (predict
word/sentence order in shuffled text)

Not very important: model architecture
details.

Pretrained LM performance
comparison: Link Leaderboard, Link
Open LLM Leaderboard

Nooooo you need convergence proofs
and VC dimension and Lyapunov analysis

Just add

Just add 34% more layers

more layers

Source
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https://openlm.ai/chatbot-arena/
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://x.com/ai_memes

Questions ?
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