
Understanding and Training Language Models:
Self-attention and Transformers

Erik-Jan Senn

Faculty of Mathematics and Statistics, University of St. Gallen

CSH Autumn School at University of Hohenheim
September/October 2024

1 / 22

Where are we?
Text Document(s):

Without labels

A) Feature
extraction
approach

Task-specific
Model

(E.g. Sentiment
Classifier)

Output of Pipeline
 a numeric/textual

prediction

Tokenizer

Feed-forward
Neural

NetworkPositional
Embedding*

Pre-TrainingText
pre-processing

Masked
language

modelling /
next word
prediction

Foundation Language Model (e.g. BERT, GPT)

Token
Embedding*

Self-Attention

Model Class
(Focus: Transformer)

Text Document(s)
With labels

B) Fine-tuning
approach

01xx

1

Language Modelling Pipeline
2 / 22

Roadmap

Self-attention

Transformers

3 / 22

Self-attention and Transformers
Self-attention

4 / 22

What is attention?

Motivating example:
Yesterday, my friends went to the cinema because the weather was nasty.

The movie had amazing visuals, but the story was quite boring.

5 / 22

5 / 22

What is attention?

Motivating example:
Yesterday, my friends went to the cinema because the weather was nasty.

The movie had amazing visuals, but the story was quite boring.

Possible task:
▶ How many adjectives are in this sentence? 3

5 / 22

What is attention?

Motivating example:
Yesterday, my friends went to the cinema because the weather was nasty.

The movie had amazing visuals, but the story was quite boring.

Possible task:
▶ Is this movie review positive, negative, or neutral? neutral

5 / 22

What is attention?

Motivating example:
Yesterday, my friends went to the cinema because the weather was nasty.

The movie had amazing visuals, but the story was quite boring.

Possible task:
▶ Is it going to rain today? pretty likely

5 / 22

What is attention?

Motivating example:
Yesterday, my friends went to the cinema because the weather was nasty.

The movie had amazing visuals, but the story was quite boring.

We observe:

▶ Some parts of the sequence are more important in general (e.g., the was never
highlighted).

▶ Each task requires looking at different tokens in the sequence.

5 / 22

What is attention?

Motivating example:
Yesterday, my friends went to the cinema because the weather was nasty.

The movie had amazing visuals, but the story was quite boring.

We observe:

▶ Some parts of the sequence are more important in general (e.g., the was never
highlighted).

▶ Each task requires looking at different tokens in the sequence.

Idea of attention: Allow tokens to interact (to represent and learn more general concepts,
interactions), by paying attention to other tokens.

5 / 22

Self-attention Matrix

▶ A is a l × l interaction matrix for tokens within a
sequence.

▶ Red element A4,3:
▶ How much attention does token cat pay to

token my (one-directional)?

▶ More specific: How much will the output
representation of the token cat be influenced
by the representation of token my.

▶ Yellow element A3,4: How much attention does
token my pay to token cat (one-directional)?

▶ A is non-symmetric, rows normalized to 1.

6 / 22

Self-attention Matrix

▶ A is a l × l interaction matrix for tokens within a
sequence.

▶ Red element A4,3:
▶ How much attention does token cat pay to

token my (one-directional)?

▶ More specific: How much will the output
representation of the token cat be influenced
by the representation of token my.

▶ Yellow element A3,4: How much attention does
token my pay to token cat (one-directional)?

▶ A is non-symmetric, rows normalized to 1.

6 / 22

Self-attention Matrix

▶ A is a l × l interaction matrix for tokens within a
sequence.

▶ Red element A4,3:
▶ How much attention does token cat pay to

token my (one-directional)?

▶ More specific: How much will the output
representation of the token cat be influenced
by the representation of token my.

▶ Yellow element A3,4: How much attention does
token my pay to token cat (one-directional)?

▶ A is non-symmetric, rows normalized to 1.

6 / 22

Self-attention Matrix

▶ A is a l × l interaction matrix for tokens within a
sequence.

▶ Red element A4,3:
▶ How much attention does token cat pay to

token my (one-directional)?

▶ More specific: How much will the output
representation of the token cat be influenced
by the representation of token my.

▶ Yellow element A3,4: How much attention does
token my pay to token cat (one-directional)?

▶ A is non-symmetric, rows normalized to 1.

6 / 22

Self-attention Overview

Source
7 / 22

https://github.com/rasbt/https://github.com/rasbt/LLMs-from-scratch

Self-attention Step-by-Step

Source

8 / 22

https://github.com/rasbt/https://github.com/rasbt/LLMs-from-scratch

Self-attention Step-by-Step

Source
8 / 22

https://github.com/rasbt/https://github.com/rasbt/LLMs-from-scratch

Self-attention Step-by-Step

Source

8 / 22

https://github.com/rasbt/https://github.com/rasbt/LLMs-from-scratch

Self-attention Step-by-Step

Source
8 / 22

https://github.com/rasbt/https://github.com/rasbt/LLMs-from-scratch

Self-attention Step-by-Step

Source 8 / 22

https://github.com/rasbt/https://github.com/rasbt/LLMs-from-scratch

Self-attention - Mathematical Formulation
Self-attention is a function f : X 7→ Z with notation:
▶ Input matrix X ∈ Rl×din and output/context matrix Z ∈ Rl×dout

▶ Sequence length l
▶ Input features (per element, e.g. token) din and output features dout (often din = dout)
▶ Trainable parameters: Wq,Wk ,Wv ∈ Rdin×dout

Computation steps
▶ Query matrix Q = X Wq
▶ Key matrix K = X Wk
▶ Value matrix V = X Wv
▶ Attention score matrix (normalized by dimension) from query and key S = QKT

√
dout

▶ Attention matrix (normalization of S) S) Ai,j = softmax(Si) =
eSi,j

∑l
colc=1 eSi,c

with Ai,j as
element of A in row i , column j .

▶ Output (context) matrix: Z = A V
If not noted differently its standard matrix product.

9 / 22

Why is Self-Attention so Useful?

Self-attention is a parametric model for within-sequence interactions that works well in
practice.

▶ Flexible interactions over time: Without being a true time-series model like recurrent
neural networks, all sequence elements can interact even when far apart.

▶ Parallel processing: Parallel computation of the entire sequence is possible, unlike
recurrent neural networks, which require sequential processing.

▶ Parameter efficiency: More parameter-efficient compared to, for example, a fully
connected feed-forward neural network with inputs of dimension l × d . The
parameter count does not depend on sequence length l .

10 / 22

Why is Self-Attention so Useful?

Self-attention is a parametric model for within-sequence interactions that works well in
practice.
▶ Flexible interactions over time: Without being a true time-series model like recurrent

neural networks, all sequence elements can interact even when far apart.

▶ Parallel processing: Parallel computation of the entire sequence is possible, unlike
recurrent neural networks, which require sequential processing.

▶ Parameter efficiency: More parameter-efficient compared to, for example, a fully
connected feed-forward neural network with inputs of dimension l × d . The
parameter count does not depend on sequence length l .

10 / 22

Why is Self-Attention so Useful?

Self-attention is a parametric model for within-sequence interactions that works well in
practice.
▶ Flexible interactions over time: Without being a true time-series model like recurrent

neural networks, all sequence elements can interact even when far apart.

▶ Parallel processing: Parallel computation of the entire sequence is possible, unlike
recurrent neural networks, which require sequential processing.

▶ Parameter efficiency: More parameter-efficient compared to, for example, a fully
connected feed-forward neural network with inputs of dimension l × d . The
parameter count does not depend on sequence length l .

10 / 22

Why is Self-Attention so Useful?

Self-attention is a parametric model for within-sequence interactions that works well in
practice.
▶ Flexible interactions over time: Without being a true time-series model like recurrent

neural networks, all sequence elements can interact even when far apart.

▶ Parallel processing: Parallel computation of the entire sequence is possible, unlike
recurrent neural networks, which require sequential processing.

▶ Parameter efficiency: More parameter-efficient compared to, for example, a fully
connected feed-forward neural network with inputs of dimension l × d . The
parameter count does not depend on sequence length l .

10 / 22

Why is Self-Attention so Useful?

Self-attention is a parametric model for within-sequence interactions that works well in
practice.
▶ Flexible interactions over time: Without being a true time-series model like recurrent

neural networks, all sequence elements can interact even when far apart.

▶ Parallel processing: Parallel computation of the entire sequence is possible, unlike
recurrent neural networks, which require sequential processing.

▶ Parameter efficiency: More parameter-efficient compared to, for example, a fully
connected feed-forward neural network with inputs of dimension l × d . The
parameter count does not depend on sequence length l .

Now, let’s combine Self-Attention with feed-forward neural networks to build our
language modeling architecture: the Transformer.

10 / 22

Self-attention and Transformers
Transformers

11 / 22

Which Transformer are we talking about?

this tool.

12 / 22

https://imgflip.com/memegenerator

Example transformer architecture - GPT2

GPT2 model. Source

13 / 22

https://github.com/rasbt/LLM-workshop-2024

Multi-head Attention
Many attention mechanisms in parallel to allow to pay attention to multiple concepts /
meanings simultaneously. Combined using a linear regression / layer.

Multi-head-attention Source

14 / 22

https://github.com/rasbt/LLMs-from-scratch

Gradient Flow

Gradient flow: the ability to consistently receive reliable gradient information at each part
of the network to train parameters (even if very deep).
▶ Good flow: Most activations are close to the sensitive region of the non-linear loss

function (e.g. Relu or Sigmoid around 0) and outputs are not large.

▶ Bad flow: Large variance and non-zero mean of activations lead to vanishing or
exploding gradients (main issue of recurrent neural networks).

15 / 22

Transformer Tricks to Improve Gradient Flow
Transformers add components to improve gradient flow:
▶ Residual/skip connections: Add inputs of previous layers to output of current layer to

allow.

▶ Layer normalization
x̂t =

xt − µt√
σ2

t + ϵ
⊙ γ + β

▶ γ ∈ Rd are learned weights,
▶ β ∈ Rd is the learned bias,
▶ x̂t ∈ Rd is the normalized output for token (input) t ,
▶ xt ∈ Rd is the input vector for token (input) t ,
▶ µt ∈ R is the mean of the input activations for token t over d features.
▶ σ2

t ∈ R is the variance of the input activations for token t ,
▶ ϵ is a small constant added for numerical stability,
▶ ⊙ denotes element-wise multiplication.

16 / 22

Transformer Tricks to Improve Gradient Flow (cont’d)
Dropout means randomly setting some outputs to 0 during training (regularization).

Dropout Source
17 / 22

https://paperswithcode.com/method/dropout

Transformers
A transformer is a function f : Xl×din 7→ Zl×dout to transform embedding spaces.

▶ Original architecture introduced in Vaswani et al. (2023).

▶ Main component: k transformer blocks which are built from:
▶ Multi-head self-attention with n heads.

▶ Mulit-layer perceptron (MLP): 2 layers, with fan-out (e.g. d × 4 neurons) and fan-in (back
to d neurons).

▶ Layer normalization

▶ Residual connections

▶ Dropout and attention dropout.

▶ Same MLP is applied for each token, on input dimension d (not l × d !).

▶ Interactions only modelled by multi-head self-attention (few parameters).

18 / 22

Transformers
A transformer is a function f : Xl×din 7→ Zl×dout to transform embedding spaces.
▶ Original architecture introduced in Vaswani et al. (2023).

▶ Main component: k transformer blocks which are built from:
▶ Multi-head self-attention with n heads.

▶ Mulit-layer perceptron (MLP): 2 layers, with fan-out (e.g. d × 4 neurons) and fan-in (back
to d neurons).

▶ Layer normalization

▶ Residual connections

▶ Dropout and attention dropout.

▶ Same MLP is applied for each token, on input dimension d (not l × d !).

▶ Interactions only modelled by multi-head self-attention (few parameters).
18 / 22

Transformers (cont’d)
A transformer is a function f : Xl×din 7→ Zl×dout to transform embedding spaces.
▶ Input goes sequentiallysequentially through each transformer block and is passed to

next block(passed to next block). Always maps back to the same dimensionality same
dimensionality (by choice of din = dout , but could be fully flexible).

▶ Parameters depend on d , number of attention heads in each multi-head attention
mechanism, MLPs dimension. E.g. BERT with 110/340 Million, Llama with 65 Billion,
GPT4 with 1.8 Trillion.

▶ Parallel processing for entire sequence at once possible.

▶ Architecture variants
▶ Encoder-only models (e.g., BERT) aim to (only) find valuable latent text representations

(but could also generate text).
▶ Decoder-only models (e.g., GPT) aim to do autoregressive text generation (but also has

valuable latent text representations).
▶ Encoder-decoder models (e.g., BART) do both.

Link to an amazing visualization for attention and the GPT-2 model architecture.

19 / 22

https://poloclub.github.io/transformer-explainer/

Transformers (cont’d)
A transformer is a function f : Xl×din 7→ Zl×dout to transform embedding spaces.
▶ Input goes sequentiallysequentially through each transformer block and is passed to

next block(passed to next block). Always maps back to the same dimensionality same
dimensionality (by choice of din = dout , but could be fully flexible).

▶ Parameters depend on d , number of attention heads in each multi-head attention
mechanism, MLPs dimension. E.g. BERT with 110/340 Million, Llama with 65 Billion,
GPT4 with 1.8 Trillion.

▶ Parallel processing for entire sequence at once possible.

▶ Architecture variants
▶ Encoder-only models (e.g., BERT) aim to (only) find valuable latent text representations

(but could also generate text).
▶ Decoder-only models (e.g., GPT) aim to do autoregressive text generation (but also has

valuable latent text representations).
▶ Encoder-decoder models (e.g., BART) do both.

Link to an amazing visualization for attention and the GPT-2 model architecture.
19 / 22

https://poloclub.github.io/transformer-explainer/

Configuration of GPT-2

GPT-2 model configuration file that defines architecture from Huggingface model.GPT-2
model configuration file that defines architecture from Huggingface model.

20 / 22

https://github.com/huggingface/transformers/blob/v4.45.1/src/transformers/models/gpt2/configuration_gpt2.py##L30
https://github.com/huggingface/transformers/blob/v4.45.1/src/transformers/models/gpt2/configuration_gpt2.py##L30

Questions ?

21 / 22

References

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need, July 2023.

22 / 22

	Self-attention
	Transformers
	References

