Understanding and Training Language Models:

Text preprocessing

Erik-Jan Senn

Faculty of Mathematics and Statistics, University of St. Gallen

CSH Autumn School at University of Hohenheim
September/October 2024

1/21

Where are we?

Text Document(s):

Without labels

Foundation Language Model (

Tokenizer

Token
Embedding*

Positional
Embedding*

Text =
pre-processing

Self-Attention

Feed-forward
Neural
Network

Masked
language
modelling /
next word
prediction

l

1

t Document(s)
With labels

Task-specific

A) Feature
extraction
approach

B) Fine-tuning
approach

Output of

1 a numeric/te
predic

Language Modelling Pipeline

2/21

Roadmap

Tokenization

Input Embeddings

3/21

Overview

» Tokenizer
» Cuts input text to smallest
components, so called tokens (string
vector).

» For each token, assigns a token ID
(integer vector) using the vocabulary.

» Input embedding: For token ID, assign
an input embedding (float matrix).
» Embedding means latent (vector)
representation.

» This will boil down to simple matrix
multiplication:

El><d = Eone—hot,lxv . ET,v><d(9T) + EP,de(eP)

Output text
Postprocessing steps

|8 —

GPT-like
decoder-only
transformer

f

Figure adapted from “Build a Lmlz(Language Model From Scratch”

Input
embeddings: []] CIC] IO I

Token IDs: [40134] [2052] [133 | [389 | [12
" Tokenized text: [This] [is | [[an]| [example] [.]
T
Source

4/21

https://github.com/rasbt/LLM-workshop-2024

Text Preprocessing

Tokenization

Tokenization
We want to represent a (sequence of) text
as integers.

1. Split the text in smallest indivisible
units called tokens.

2. Assign each unique word its own
integer: token 1D

The vocabulary is a list of tokens and their
corresponding token IDs.

Tokenization breaks down the

training set into individual tokens

TN

Sample text

The brown dog
playfully chased
the swift fox

Tokenized sample text

I i

token IDs using an
existing vocabulary

Existing vocabulary

o] — 2]
[l [
][]
-

Token IDs

(L] GIL

Figure adapted from “Build a Large Language Model From Scratch”

Source /21

https://github.com/rasbt/LLM-workshop-2024

Building a Tokenizer: How large should a Token be?

There is a tradeoff:

\ Small tokens Large tokens
Example \ Characters (a, b) Sentences (I love Apples)
Semantic meaning of T. Ambiguous Precise
Interaction effects between T.s | Complicated Simple
Occurences of T. in real text Frequent Infrequent

Number of T’s. Low High

7/21

Building a Tokenizer: Common Approaches

» Word-level tokenization

» Character-level tokenization

» Subword tokenization is the State-of-the-art (SOTA):
» General idea:

1. Start with single characters as tokens:
a,b, ...

2. lteratively merge frequently occurring character combinations to own tokens:

{t} and {h} merged to {th},
then {th} and {e} merged to {the}, ...

3. Stop when a target vocabulary size (number of tokens) is reached.

» E.g. WordPiece (variants used e.g. in BERT), Byte-Pair-Encoding (variants used e.g. by GPT2,

LLama)

8/21

Some Notes on Tokens

» Special context tokens are tokens that carry a special meaning.
Examples:
» A text component that cannot be found/split up in known vocabulary: [UNK] in BERT.
» Mark separate text documents (e.g. multiple tweets): <endoftext> in GPT-2, [CLS] &
[SEP] in BERT.
» Some models require every sequence to have the same length /: e.g. in [PAD] tokens are
used in BERT to fill shorter sequences up to that length.

» The token ##{ tezt } denotes a continuation of a word in subword tokenization:
e.g. working could consist of two tokens, work and ##ing.

» Adding new tokens to a tokenizer:

» Useful when your text documents differ from the text used to train the tokenizer.

» E.g. add tokens to handle domain-specific vocabulary (e.g. EBIT in accounting, MRI in
medicine) or identify entities in your data (e.g. company names).

» New tokens require resizing and training of the new token embeddings and fine-tuning of
entire LLM.

9/21

One-Hot-Encoding

> After tokenization, input text sequences can be represented using one-hot-encoding:

Each token is assigned a sparse vector with many Os and a 1 for the corresponding

token index in the vocabulary.

» The matrix Egne_por € {0, 1}/*Y has I rows for the tokens in the text input (of
maximum size /) and v columns for the vocabulary (of size v).

Vocabulary (size v)

Tokens |you . fruit apples is are healthy nutritious
Input (length /) Tokens TokenIDs| O 1 2 3 4 5 6 7
fruit 2 0o 0 1 0 0 0 0 0
Y is 4 0 0 O 0 1 0 0 0
Fruitis healthy. - ithy 6 o0 0 0 0 0 1 0
. 1 0o 1 0 0 0 0 0 0
apples 3 0 0 O 1 0 0 0 0
Apples are nutritious. a.re.z 5 0 0 0 0 0 1 0 0
nutritious 7 0 0 0 0 0 O 0 1
1 0 1 0 0 0 O 0 0

10/21

Text Preprocessing

Input Embeddings

Input embeddings

Input embeddings E € R'*? are low-dimensional dense representations of the text before
it is passed to the heart of the LMs, the transformer.

E/xd = Eone—hot.ixv - ET.vxa(07) + Ep 1xq(0p)

» Eone_not € {0,1}/ : one-hot-encoded token ids of sequence
Er(67) € RV*9 : token embedding matrix with learnable parameters 67
Ep(0p) € R'*9: absolute position embedding matrix with learnable parameters 6

| 2
>
» |: sequence length in tokens (e.g. max 512 in BERT)
» d: output dimension (decision, e.g. 768 in BERT)

>

v : vocabulary size (depends on tokenizer, e.g. 30522 in BERT)

12/21

Token Embeddings

Motivating example (from before):
1. Fruitis healthy. (E™ o6 not 1xcv)

2. Apples are nutritious. (E®) ;pe_pot /xv)

Problem 1: Eppe—pot,ixv is high-dimensional and sparse: E.g. for / = 512 and v = 30522 as
in BERT, the matrix Eope—pot.ixv has 15,627, 264 entries.

Solution 1: The token embedding matrix Er(07) € RY* transforms input text into a
dense continuous low-dimensional token representation of dimension / x d with d << v

13/21

Token Embeddings

Motivating example (from before):
1. Fruit is healthy. (E™ ye_not 15 v)

2. Apples are nutritious. (E(2) one—hot.ixv)

Problem 2: Epne—hot,1xv ignores semantic similarity: E.g. the tokens apple and apple have
similar meanings, but the representations are not similar.

Solution 2: The token embedding matrix E1(07) € RY*? is trained to capture semantic
meanings of tokens - similar tokens have similar token embedding vectors (e.g. measured
by cosine similarity). Training is conducted jointly with the rest of the LM (see later
lectures), or using e.g. word2vec.

13/21

Token Embeddings Computation

Token embeddings for an input
text can be computed in two
equivalent ways:

» Matrix multiplication:
Eone—hot,lxv : ET,v><d(9T)

» Index Look-up (see figure):

Weight matrix of the _
embedding layer 0.3374 -0.1778 -0.1690
0.9178 1.5810 1.3010

1.2753 —0.2010 —0.1606

—0.4015 0.9666 —1.1481
—1.1589 0.3255 -0.6315

Token IDs to embed (£2.8400_—0.7849 _—1.4096)

N
Input text
o fox
jumps 3 Embedding vector of the
over 5 first token ID
dog 1

((1.2753 —0.2010 —0.1606)
—0.4015 0.9666 —1.1481
=2.8400 —0.7849 —1.409

Embedded token IDs

09178 1.5810 1.3010 |

Figure adapted from “Build a Large Language Model From Scratch”

2 fox

3 jumps
(15]) “ over

1 dog

«— Embedding vector of the third
token ID

The top matrix is the token embedding matrix of the
entire vocabulary, the bottom matrix is the token
embedding example text. Source

14/21

https://github.com/rasbt/LLM-workshop-2024

Position embeddings

Motivating example
1. | ate the pizza.

2. The pizza ate me.

Problem: Same tokens, but different sequence changes the entire meaning.
However, token embeddings are independent of the token position in a sequence.

Solution: The positional embedding matrix P(0p),. 4 captures the sequential structure of
text by modifying the embedding differ depending on the token position in a sequence.

Result: Two sentences with the same words but different order have different input
embeddings and therefore be differentiated.

15/21

Input and position embeddings (figure)

Input embeddings: [21]22]23] [s1]82][33] [41]42]43] [5.1]52]53]

T T I T

Positional embeddings: [1.1][12]13] [21][22][23] [8.1][32]33] [41]42]43]

+ + + +
Token embeddings: [[+ [+] [+ 1] [++] [+]1]
| E— |
Embedding of the first token Embedding of the third token

Source

16/21

https://github.com/rasbt/LLM-workshop-2024

Input embeddings

Input embeddings E € R'*? are low-dimensional dense representations of the text before
it is passed to the heart of the LMs, the transformer.

E/xd = Eone—hot.ixv - ET.vxa(07) + Ep 1xq(0p)

» Eone_not € {0,1}/ : one-hot-encoded token ids of sequence
Er(67) € RV*9 : token embedding matrix with learnable parameters 67
Ep(0p) € R'*9: absolute position embedding matrix with learnable parameters 6

| 2
>
» |: sequence length in tokens (e.g. max 512 in BERT)
» d: output dimension (decision, e.g. 768 in BERT)

>

v : vocabulary size (depends on tokenizer, e.g. 30522 in BERT)

17/21

Recap

Output text
Postprocessing steps

GPT-like

decoder-only
transformer

Figure adapted from “Build a Larfe Language Model From Scratch”

Input
embeddings: [] 1] O] O] O]

f

Token 105

" Tokenized text:

Input text:

18/21

https://github.com/rasbt/LLM-workshop-2024

Strawberries are a Problem for LMs

74 How many 'R's are in the word "Strawberry"?

@ The word "Strawberry” contains 3 'R's.

19/21

Strawberries are a Problem for LMs

2 How many 'R's are in the word "Strawberry"?

@ The word "Strawberry” contains 3 'R's.

Why could this task be so difficult for GPT40?

19/21

Questions ?

20/21

References

21/21

	Tokenization
	Input Embeddings
	References

