
Understanding and Training Language Models:
Text preprocessing

Erik-Jan Senn

Faculty of Mathematics and Statistics, University of St. Gallen

CSH Autumn School at University of Hohenheim
September/October 2024

1 / 21

Where are we?
Text Document(s):

Without labels

A) Feature
extraction
approach

Task-specific
Model

(E.g. Sentiment
Classifier)

Output of Pipeline
 a numeric/textual

prediction

Tokenizer

Feed-forward
Neural

NetworkPositional
Embedding*

Pre-TrainingText
pre-processing

Masked
language

modelling /
next word
prediction

Foundation Language Model (e.g. BERT, GPT)

Token
Embedding*

Self-Attention

Model Class
(Focus: Transformer)

Text Document(s)
With labels

B) Fine-tuning
approach

01xx

1

Language Modelling Pipeline
2 / 21

Roadmap

Tokenization

Input Embeddings

3 / 21

Overview
▶ Tokenizer

▶ Cuts input text to smallest
components, so called tokens (string
vector).

▶ For each token, assigns a token ID
(integer vector) using the vocabulary.

▶ Input embedding: For token ID, assign
an input embedding (float matrix).
▶ Embedding means latent (vector)

representation.

▶ This will boil down to simple matrix
multiplication:

El×d = Eone−hot,l×v · ET ,v×d (θT) + EP,l×d (θP) Source
4 / 21

https://github.com/rasbt/LLM-workshop-2024

Text Preprocessing
Tokenization

5 / 21

Tokenization
We want to represent a (sequence of) text
as integers.

1. Split the text in smallest indivisible
units called tokens.

2. Assign each unique word its own
integer: token ID

The vocabulary is a list of tokens and their
corresponding token IDs.

Source 6 / 21

https://github.com/rasbt/LLM-workshop-2024

Building a Tokenizer: How large should a Token be?

There is a tradeoff:
Small tokens Large tokens

Example Characters (a, b) Sentences (I love Apples)
Semantic meaning of T. Ambiguous Precise
Interaction effects between T.’s Complicated Simple
Occurences of T. in real text Frequent Infrequent
Number of T’s. Low High

7 / 21

Building a Tokenizer: Common Approaches
▶ Word-level tokenization

▶ Character-level tokenization

▶ Subword tokenization is the State-of-the-art (SOTA):
▶ General idea:

1. Start with single characters as tokens:
a,b, ...

2. Iteratively merge frequently occurring character combinations to own tokens:
{t} and {h} merged to {th},
then {th} and {e} merged to {the}, ...

3. Stop when a target vocabulary size (number of tokens) is reached.

▶ E.g. WordPiece (variants used e.g. in BERT), Byte-Pair-Encoding (variants used e.g. by GPT2,
LLama)

8 / 21

Some Notes on Tokens
▶ Special context tokens are tokens that carry a special meaning.

Examples:
▶ A text component that cannot be found/split up in known vocabulary: [UNK] in BERT.
▶ Mark separate text documents (e.g. multiple tweets): <endoftext> in GPT-2, [CLS] &

[SEP] in BERT.
▶ Some models require every sequence to have the same length l : e.g. in [PAD] tokens are

used in BERT to fill shorter sequences up to that length.

▶ The token ##{text } denotes a continuation of a word in subword tokenization:
e.g. working could consist of two tokens, work and ##ing.

▶ Adding new tokens to a tokenizer:
▶ Useful when your text documents differ from the text used to train the tokenizer.
▶ E.g. add tokens to handle domain-specific vocabulary (e.g. EBIT in accounting, MRI in

medicine) or identify entities in your data (e.g. company names).
▶ New tokens require resizing and training of the new token embeddings and fine-tuning of

entire LLM.
9 / 21

One-Hot-Encoding
▶ After tokenization, input text sequences can be represented using one-hot-encoding:

Each token is assigned a sparse vector with many 0s and a 1 for the corresponding
token index in the vocabulary.

▶ The matrix Eone−hot ∈ {0,1}l×v has l rows for the tokens in the text input (of
maximum size l) and v columns for the vocabulary (of size v).

Vocabulary (size v)
Tokens you . fruit apples is are healthy nutritious . . .

Input (length l) Tokens Token IDs 0 1 2 3 4 5 6 7 . . .

Fruit is healthy.

fruit 2 0 0 1 0 0 0 0 0 . . .
is 4 0 0 0 0 1 0 0 0 . . .

healthy 6 0 0 0 0 0 0 1 0 . . .
. 1 0 1 0 0 0 0 0 0 . . .

Apples are nutritious.

apples 3 0 0 0 1 0 0 0 0 . . .
are 5 0 0 0 0 0 1 0 0 . . .

nutritious 7 0 0 0 0 0 0 0 1 . . .
. 1 0 1 0 0 0 0 0 0 . . .

10 / 21

Text Preprocessing
Input Embeddings

11 / 21

Input embeddings

Input embeddings E ∈ Rl×d are low-dimensional dense representations of the text before
it is passed to the heart of the LMs, the transformer.

El×d = Eone−hot ,l×v · ET ,v×d (θT) + EP,l×d (θP)

▶ Eone−hot ∈ {0,1}l×v : one-hot-encoded token ids of sequence
▶ ET (θT) ∈ Rv×d : token embedding matrix with learnable parameters θT

▶ EP(θP) ∈ Rl×d : absolute position embedding matrix with learnable parameters θP

▶ l : sequence length in tokens (e.g. max 512 in BERT)
▶ d : output dimension (decision, e.g. 768 in BERT)
▶ v : vocabulary size (depends on tokenizer, e.g. 30522 in BERT)

12 / 21

Token Embeddings

Motivating example (from before):
1. Fruit is healthy. (E(1)

one−hot ,l×v)

2. Apples are nutritious. (E(2)
one−hot ,l×v)

Problem 1: Eone−hot ,l×v is high-dimensional and sparse: E.g. for l = 512 and v = 30522 as
in BERT, the matrix Eone−hot ,l×v has 15,627,264 entries.
Solution 1: The token embedding matrix ET (θT) ∈ Rv×d transforms input text into a
dense continuous low-dimensional token representation of dimension l × d with d << v

13 / 21

Token Embeddings

Motivating example (from before):
1. Fruit is healthy. (E(1)

one−hot ,l×v)

2. Apples are nutritious. (E(2)
one−hot ,l×v)

Problem 2: Eone−hot ,l×v ignores semantic similarity: E.g. the tokens apple and apple have
similar meanings, but the representations are not similar.
Solution 2: The token embedding matrix ET (θT) ∈ Rv×d is trained to capture semantic
meanings of tokens - similar tokens have similar token embedding vectors (e.g. measured
by cosine similarity). Training is conducted jointly with the rest of the LM (see later
lectures), or using e.g. word2vec.

13 / 21

Token Embeddings Computation

Token embeddings for an input
text can be computed in two
equivalent ways:
▶ Matrix multiplication:

Eone−hot ,l×v · ET ,v×d (θT)

▶ Index Look-up (see figure):

The top matrix is the token embedding matrix of the
entire vocabulary, the bottom matrix is the token

embedding example text. Source

14 / 21

https://github.com/rasbt/LLM-workshop-2024

Position embeddings

Motivating example
1. I ate the pizza.

2. The pizza ate me.

Problem: Same tokens, but different sequence changes the entire meaning.
However, token embeddings are independent of the token position in a sequence.

Solution: The positional embedding matrix P(θP)l×d captures the sequential structure of
text by modifying the embedding differ depending on the token position in a sequence.

Result: Two sentences with the same words but different order have different input
embeddings and therefore be differentiated.

15 / 21

Input and position embeddings (figure)

Source

16 / 21

https://github.com/rasbt/LLM-workshop-2024

Input embeddings

Input embeddings E ∈ Rl×d are low-dimensional dense representations of the text before
it is passed to the heart of the LMs, the transformer.

El×d = Eone−hot ,l×v · ET ,v×d (θT) + EP,l×d (θP)

▶ Eone−hot ∈ {0,1}l×v : one-hot-encoded token ids of sequence
▶ ET (θT) ∈ Rv×d : token embedding matrix with learnable parameters θT

▶ EP(θP) ∈ Rl×d : absolute position embedding matrix with learnable parameters θP

▶ l : sequence length in tokens (e.g. max 512 in BERT)
▶ d : output dimension (decision, e.g. 768 in BERT)
▶ v : vocabulary size (depends on tokenizer, e.g. 30522 in BERT)

17 / 21

Recap

Source
18 / 21

https://github.com/rasbt/LLM-workshop-2024

Strawberries are a Problem for LMs

Why could this task be so difficult for GPT4o?

19 / 21

Strawberries are a Problem for LMs

Why could this task be so difficult for GPT4o?

19 / 21

Questions ?

20 / 21

References

21 / 21

	Tokenization
	Input Embeddings
	References

