Understanding and Training Language Models:

Self-attention and Transformers

Erik-Jan Senn

Faculty of Mathematics and Statistics, University of St. Gallen

CSH Autumn School at University of Hohenheim
September/October 2024

1/22

Where are we?

Text Document(s):

Without labels

Text =
pre-processing

Tokenizer

Token
Embedding*

Positional
Embedding*

Foundation Language Model (

Self-Attention

Feed-forward
Neural
Network

Masked
language
modelling /
next word
prediction

l

1

t Document(s)
With labels

Task-specific

A) Feature
extraction
approach

B) Fine-tuning
approach

Output of

a numeric/te
predic

Language Modelling Pipeline

2/22

Roadmap

Self-attention

Transformers

3/22

Self-attention and Transformers

Self-attention

What is attention?

Motivating example:
Yesterday, my friends went to the cinema because the weather was nasty.
The movie had amazing visuals, but the story was quite boring.

5/22

5/22

What is attention?

Motivating example:
Yesterday, my friends went to the cinema because the weather was nasty.
The movie had amazing visuals, but the story was quite boring.

Possible task:
» How many adjectives are in this sentence? 3

5/22

What is attention?

Motivating example:
Yesterday, my friends went to the cinema because the weather was nasty.
The movie had amazing visuals, but the story was quite boring.

Possible task:
» Is this movie review positive, negative, or neutral? neutral

5/22

What is attention?

Motivating example:
Yesterday, my friends went to the cinema because the weather was nasty.
The movie had amazing visuals, but the story was quite boring.

Possible task:
> Is it going to rain today? pretty likely

5/22

What is attention?

Motivating example:
Yesterday, my friends went to the cinema because the weather was nasty.
The movie had amazing visuals, but the story was quite boring.

We observe:

» Some parts of the sequence are more important in general (e.g., the was never
highlighted).

» Each task requires looking at different tokens in the sequence.

5/22

What is attention?

Motivating example:

Yesterday, my friends went to the cinema because the weather was nasty.
The movie had amazing visuals, but the story was quite boring.

We observe:

» Some parts of the sequence are more important in general (e.g., the was never
highlighted).

» Each task requires looking at different tokens in the sequence.

Idea of attention: Allow tokens to interact (to represent and learn more general concepts,
interactions), by paying attention to other tokens.

5/22

Self-attention Matrix

» Aisa/ x linteraction matrix for tokens within a - . o
sequence. c2 €8 523
This
is
my
cat
She

cute

6/22

Self-attention Matrix

» Aisa/ x linteraction matrix for tokens within a

@ > 5 2 £
sequence. £ 2 E S8 52 32
> Red element Ay 3: This
» How much attention does token cat pay to s
token my (one-directional)? my
cat
» More specific: How much will the output
representation of the token cat be influenced sh
e

by the representation of token my.

cute

6/22

Self-attention Matrix

» Aisa/ x linteraction matrix for tokens within a

sequence.
> Red element Ay 3: This
» How much attention does token cat pay to s
token my (one-directional)? my
cat
» More specific: How much will the output
representation of the token cat be influenced
by the representation of token my. S_he
1S
> element Az 4: How much attention does cute

token my pay to token cat (one-directional)?

0
=
|_

is

my

cat

She

is

cute

6/22

Self-attention Matrix

» Aisa/ x linteraction matrix for tokens within a

sequence.
> Red element Ay 3: This
» How much attention does token cat pay to s
token my (one-directional)? my
cat
» More specific: How much will the output
representation of the token cat be influenced
by the representation of token my. S_he
1S
> element Az 4: How much attention does cute

token my pay to token cat (one-directional)?

» A is non-symmetric, rows normalized to 1.

0
=
|_

is

my

cat

She

is

cute

6/22

Self-attention Overview

d,=3

in

P —

The

——]o4]fo][o

8|

vector x® of the

second input token Inputs X

Weight
matrix

W,

q

Embedded queries, where the
second row is the query
vector g% corresponding to
the second input token x@

Attention weight matrix
containing the attention
scores for each pair of

inputs \ é

—_—0.

journey [0.20{f0.

n==6

starts |0.20|(0.

q:,‘ - We multiply the inputs X
s § £ with weight matrix W, to
2 " = get the value matrix V
Your |0.19}[0.16(|0.16|[0.15((0.17 || 0.15
text vect
16/(0.16|[0.14 0.16[0.14 W Context vector
corresponding to
16/(0.16[[0.14 0.16[0.14 the second input
token
.16|0.16/[0.15[|0.16/|0.15
one |0.18||0.16/|0.16][0.15 || 0.16][0.15:
step [0.19(|0.16|{0.16|0.15][0.16|0.15

© 2024 Sebastian Raschka So urce

7/22

https://github.com/rasbt/https://github.com/rasbt/LLMs-from-scratch

Self-attention Step-by-Step

Input vector “Your” “journey” “starts” mimn “step”

(token embedding) D @ 3 e 44T

corresponding to --;

the first token
Attention weight to Gog @3
; ; —* 5 7
weigh the importance
of input D

The context vector 7% is 7@
computed as a combination of
all input vectors weighted with

respect to input element x@

© 2024 Sebastian Raschka 62

https://github.com/rasbt/https://github.com/rasbt/LLMs-from-scratch

Self-attention Step-by-Step

The second input token serves as the
/ current input vector to create the query

“Your” o — stap”
xD <@ D

Wk[Nv W/ W{ NV WI{ NV
EE EE @EE -

key KV value vV g™ k2 v kD ne)

\

This is the value vector corresponding to the first input token obtained via
matrix multiplication between the weight matrix W, and input token W

© 2024 Sebastian Raschka

Source

8/22

https://github.com/rasbt/https://github.com/rasbt/LLMs-from-scratch

Self-attention Step-by-Step

“journey”
el

key kU value v(D

@) . ()]
query ¢ Attention q [1.5] @,
27
@ score @,
The unscaled attention score is computed as a dot Since we want to compute the context vector for the second
product between the query and the key vectors input token, the query is derived from that second input token

© 2024 Sebastian Raschka

Source

8/22

https://github.com/rasbt/https://github.com/rasbt/LLMs-from-scratch

Self-attention Step-by-Step

“Your”
o)

W,{ w

key kD value v(V
query q(Z) Attention
score @y,

Attention
weight ay;

“journey”
x@

stop”
e

palfa] [oa]a]

ZE A

g? Ie)

\—l

The unscaled P @22

attention score
from the previous a2

step

Source

EE
v kD @
Bl —
q(2) @y

ayr

+. The attention weights
are computed using the
softmax function

© 2024 Sebastian Raschka

8/22

https://github.com/rasbt/https://github.com/rasbt/LLMs-from-scratch

Self-attention Step-by-Step

-
o)

W,{ ¥
key k<O value v(D

query g@
@1

|

Attention
weight @,

“journey”
x@

/o] N

ustep”
ey

|

B G @
q® k@ @ jA) »@D
\—j
q®
@ l
0‘221

Context ‘\ The last step is multiplying each value vector

vector z(z)

Source

with its respective attention weight and then
summing them to obtain the context vector

© 2024 Sebastian Raschka

8/22

https://github.com/rasbt/https://github.com/rasbt/LLMs-from-scratch

Self-attention - Mathematical Formulation
Self-attention is a function f : X — Z with notation:
» Input matrix X € R/*% and output/context matrix Z € IR/*out
» Sequence length /
» Input features (per element, e.g. token) dj, and output features dy; (often dj, = dout)
> Trainable parameters: Wq, Wy, W, € IR%n> dout
Computation steps
» Query matrix @ = XWg,
> Key matrix K = XW
» Value matrix V= XW,

» Attention score matrix (normalized by dimension) from query and key S = %
Sij .
> Attention matrix (normalization of S) S) A; ; = softmax(S;) = Z/eiles,c with A; ; as
colc=1 !

element of A in row /, column j.
» Output (context) matrix: Z = AV
If not noted differently its standard matrix product.

9/22

Why is Self-Attention so Useful?

Self-attention is a parametric model for within-sequence interactions that works well in
practice.

10/22

Why is Self-Attention so Useful?

Self-attention is a parametric model for within-sequence interactions that works well in
practice.

» Flexible interactions over time: Without being a true time-series model like recurrent
neural networks, all sequence elements can interact even when far apart.

10/22

Why is Self-Attention so Useful?

Self-attention is a parametric model for within-sequence interactions that works well in
practice.

» Flexible interactions over time: Without being a true time-series model like recurrent
neural networks, all sequence elements can interact even when far apart.

» Parallel processing: Parallel computation of the entire sequence is possible, unlike
recurrent neural networks, which require sequential processing.

10/22

Why is Self-Attention so Useful?

Self-attention is a parametric model for within-sequence interactions that works well in
practice.
» Flexible interactions over time: Without being a true time-series model like recurrent
neural networks, all sequence elements can interact even when far apart.

» Parallel processing: Parallel computation of the entire sequence is possible, unlike
recurrent neural networks, which require sequential processing.

» Parameter efficiency: More parameter-efficient compared to, for example, a fully

connected feed-forward neural network with inputs of dimension / x d. The
parameter count does not depend on sequence length /.

10/22

Why is Self-Attention so Useful?

Self-attention is a parametric model for within-sequence interactions that works well in
practice.
» Flexible interactions over time: Without being a true time-series model like recurrent
neural networks, all sequence elements can interact even when far apart.

» Parallel processing: Parallel computation of the entire sequence is possible, unlike
recurrent neural networks, which require sequential processing.

» Parameter efficiency: More parameter-efficient compared to, for example, a fully
connected feed-forward neural network with inputs of dimension / x d. The
parameter count does not depend on sequence length /.

Now, let’'s combine Self-Attention with feed-forward neural networks to build our
language modeling architecture: the Transformer.

10/22

Self-attention and Transformers

Transformers

11/22

Which Transformer are we talking about?

AN
SFORMER
%ﬂ MILLION
OF STEEL

this tool.

12/22

https://imgflip.com/memegenerator

Example transformer architecture - GPT2

GPT-2 “small” GPT-2 “large”

GPT2 model. Source

13/22

https://github.com/rasbt/LLM-workshop-2024

Multi-head Attention

The embedded input tokens

remain unchanged

meanings simultaneously. Combined using a linear regression / layer

Inputs X

Weight

Many attention mechanisms in parallel to allow to pay attention to multiple concepts /

n.7L|nz”n 1

The values of the Sth row (input)

are shown as an example

Weight

‘matrix matrix
W I W,y I Instead of one value weight matrix

Instead of one query matrix O, we

have two query matrices O, and O,

For multi-head attention with two
heads, we obtain two attention _»
weight matrices, including causal

and dropout masks

Multi-head-attention Source

Qusnes Values
Vl

o W, in single-head attention, use

two matrices W, and W,

We now have two sets of

context vectors, Z, and Z,

Combined
conte

vectors Z

forfo Jor]fos]

The context vector in Z,
corresponding to the fifth input that
was highlighted in the inputs X

14/22

https://github.com/rasbt/LLMs-from-scratch

Gradient Flow

Gradient flow: the ability to consistently receive reliable gradient information at each part
of the network to train parameters (even if very deep).

» Good flow: Most activations are close to the sensitive region of the non-linear loss
function (e.g. Relu or Sigmoid around 0) and outputs are not large.

» Bad flow: Large variance and non-zero mean of activations lead to vanishing or
exploding gradients (main issue of recurrent neural networks).

15/22

Transformer Tricks to Improve Gradient Flow
Transformers add components to improve gradient flow:

» Residual/skip connections: Add inputs of previous layers to output of current layer to
allow.

» Layer normalization

VVYVVVYYVYYVYY

Xt — Ut

\Jo2+e

>
I

Or+p

v E R are learned weights,

B e R is the learned bias,

%; € RY is the normalized output for token (input) ¢,

X; € RY is the input vector for token (input) ¢,

ut € R is the mean of the input activations for token t over d features.
at2 € R is the variance of the input activations for token ft,

€ is a small constant added for numerical stability,

® denotes element-wise multiplication.

16/22

Dropout means randomly setting some outputs to O during training (regularization).

Transformer Tricks to Improve Gradient Flow (cont’d)

/

o

(b) After applying dropout.

Dropout Source

Standard Neural Net

5
S—

17/22

https://paperswithcode.com/method/dropout

Transformers
A transformer is a function f : X 4, + 2y g, to transform embedding spaces.

18/22

Transformers
A transformer is a function f : X 4, + 2y g, to transform embedding spaces.
» Original architecture introduced in Vaswani et al. (2023).

» Main component: k transformer blocks which are built from:
» Multi-head self-attention with n heads.

» Mulit-layer perceptron (MLP): 2 layers, with fan-out (e.g. d x 4 neurons) and fan-in (back
to d neurons).

» Layer normalization
» Residual connections

» Dropout and attention dropout.
» Same MLP is applied for each token, on input dimension d (not / x d!).

» Interactions only modelled by multi-head self-attention (few parameters).
18/22

Transformers (cont'd)
A transformer is a function f : X 4, + 2y g, to transform embedding spaces.
» Input goes sequentiallysequentially through each transformer block and is passed to
next block(passed to next block). Always maps back to the same dimensionality same
dimensionality (by choice of dj, = d,u, but could be fully flexible).

» Parameters depend on d, number of attention heads in each multi-head attention
mechanism, MLPs dimension. E.g. BERT with 110/340 Million, Llama with 65 Billion,
GPT4 with 1.8 Trillion.

» Parallel processing for entire sequence at once possible.

19/22

https://poloclub.github.io/transformer-explainer/

Transformers (cont'd)
A transformer is a function f : X 4, + 2y g, to transform embedding spaces.
» Input goes sequentiallysequentially through each transformer block and is passed to
next block(passed to next block). Always maps back to the same dimensionality same
dimensionality (by choice of dj, = d,u, but could be fully flexible).

» Parameters depend on d, number of attention heads in each multi-head attention
mechanism, MLPs dimension. E.g. BERT with 110/340 Million, Llama with 65 Billion,
GPT4 with 1.8 Trillion.

» Parallel processing for entire sequence at once possible.

» Architecture variants
» Encoder-only models (e.g., BERT) aim to (only) find valuable latent text representations
(but could also generate text).
» Decoder-only models (e.g., GPT) aim to do autoregressive text generation (but also has
valuable latent text representations).
» Encoder-decoder models (e.g., BART) do both.

Link to an amazing visualization for attention and the GPT-2 model architecture.)2

https://poloclub.github.io/transformer-explainer/

Configuration of GPT-2

GPT-2 model configuration file that defines architecture from Huggingface model.GPT-2
model configuration file that defines architecture from Huggingface model.

20/22

https://github.com/huggingface/transformers/blob/v4.45.1/src/transformers/models/gpt2/configuration_gpt2.py##L30
https://github.com/huggingface/transformers/blob/v4.45.1/src/transformers/models/gpt2/configuration_gpt2.py##L30

Questions ?

21/22

References

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and lllia Polosukhin. Attention Is All You Need, July 2023.

22/22

	Self-attention
	Transformers
	References

