Understanding and Training Language Models:

Training Foundation Language Modelss

Erik-Jan Senn

Faculty of Mathematics and Statistics, University of St. Gallen

CSH Autumn School at University of Hohenheim
September/October 2024

1/19

Where are we?

Text Document(s):

Without labels

Foundation Language Model (

Text
pre-processing

Tokenizer
Self-Attention
Token
Embedding* Feed-forward
Neural
Positional Network
Embedding*

Masked
language
modelling /
next word
prediction

—)

=)

t Document(s)
With labels

Task-specific

A) Feature
extraction
approach

B) Fine-tuning
approach

$

Output of
1 a numeric/te

predic

Language Modelling Pipeline

2/19

Foundation Models

Goal: Models that generally understand and predict human language well.

3/19

Foundation Models

Goal: Models that generally understand and predict human language well. Conjecture: If

they are trained with sufficiently much data, they can work well for many possible tasks.

3/19

Foundation Models

Goal: Models that generally understand and predict human language well. Conjecture: If

they are trained with sufficiently much data, they can work well for many possible tasks.

> Non-generative / representation transformers:
encoder-only models (e.g., BERT) aim to (only) find valuable latent text representations
(but could also generate text).

» Generative learners:
Decoder-only transformers (e.g., GPT) aim to do autoregressive text generation (but

also has valuable latent text representations).

» Generative Encoder-decoder transformers (e.g., BART) do both.

3/19

Roadmap

Training Foundation Models

Practical Aspects

4/19

Foundation Language Models

Training Foundation Models

Self-supervised Learning

1. Issue: We want to train a large model using supervised learning.
But how do we get the large amounts of data required for training?

6/19

Self-supervised Learning

1. Issue: We want to train a large model using supervised learning.
But how do we get the large amounts of data required for training?

2. ldea: Labels and the prediction target can be the text itself!
We can predict words from surrounding information, by masking words in the text.

6/19

Self-supervised Learning

1. Issue: We want to train a large model using supervised learning.
But how do we get the large amounts of data required for training?

2. ldea: Labels and the prediction target can be the text itself!
We can predict words from surrounding information, by masking words in the text.

3. Remaining setup:
> Model class f(x, 0): We use Transformers, which are easy to estimate and could work well
for language. But can be any model.

» Loss L is a multi-class classification loss for the masked words.

» The learning algorithm is e.g. gradient-based.

6/19

Self-supervised Learning

1. Issue: We want to train a large model using supervised learning.
But how do we get the large amounts of data required for training?

2. ldea: Labels and the prediction target can be the text itself!
We can predict words from surrounding information, by masking words in the text.

3. Remaining setup:
> Model class f(x, 0): We use Transformers, which are easy to estimate and could work well
for language. But can be any model.

» Loss L is a multi-class classification loss for the masked words.

» The learning algorithm is e.g. gradient-based.

6/19

Self-supervised Learning

1. Issue: We want to train a large model using supervised learning.
But how do we get the large amounts of data required for training?

2. ldea: Labels and the prediction target can be the text itself!
We can predict words from surrounding information, by masking words in the text.

3. Remaining setup:
> Model class f(x, 0): We use Transformers, which are easy to estimate and could work well
for language. But can be any model.

» Loss L is a multi-class classification loss for the masked words.
» The learning algorithm is e.g. gradient-based.

We turned a complex problem understanding human language into a multi-class prediction
problem with lots a labeled data.

6/19

Random Masked Language Modelling

Softmax probabilities.

on the vocabulary
maximised w.r.. the masked token t3

Dummsomnax

Contextualised
token vectors

Bidirectional Encoder Representation Transformers (BERT)

Masked tokenized
sentence

Random Masking

Original tokenized “// ' ‘V V\\ / \ ‘/ \ / \ / \
sentence)

<o O O U T
Random Masking in BERT. Source

7/19

https://www.researchgate.net/publication/349393574_A_survey_on_training_and_evaluation_of_word_embeddings

Random Masked Language Modelling - Details

1. One-hot encoded input sequence X € R'*V (or id vector)

8/19

Random Masked Language Modelling - Details

1. One-hot encoded input sequence X € R’*V (or id vector)

2. 15% of input tokens are randomly masked (altered during training:
» 80% out of are set to to the special token [Mask]. These will be our prediction targets
later.

» Some are replaced by a different token.

8/19

Random Masked Language Modelling - Details

1. One-hot encoded input sequence X € R’*V (or id vector)

2. 15% of input tokens are randomly masked (altered during training:
» 80% out of are set to to the special token [Mask]. These will be our prediction targets
later.

» Some are replaced by a different token.
3. Input embeddings map to E € R/*?

4. Transformer processes input embeddings to useful hidden representation Z € R/*¢
(keep dimension).

8/19

Random Masked Language Modelling - Details

1. One-hot encoded input sequence X € R’*V (or id vector)

2. 15% of input tokens are randomly masked (altered during training:
» 80% out of are set to to the special token [Mask]. These will be our prediction targets

later.
» Some are replaced by a different token.
3. Input embeddings map to E € R/*?

4. Transformer processes input embeddings to useful hidden representation Z € R/*¢
(keep dimension).

5. Mask token prediction for [Mask] tokens to the vocabulary v (excluding mask).
» 1-layer MLP for classification (linear layer and softmax).

» Z — P where P hot With dimension / x v.

8/19

Random Masked Language Modelling - Details

1. One-hot encoded input sequence X € R’*V (or id vector)

2. 15% of input tokens are randomly masked (altered during training:
» 80% out of are set to to the special token [Mask]. These will be our prediction targets
later.

» Some are replaced by a different token.
3. Input embeddings map to E € R/*?

4. Transformer processes input embeddings to useful hidden representation Z € R/*¢
(keep dimension).

5. Mask token prediction for [Mask] tokens to the vocabulary v (excluding mask).
» 1-layer MLP for classification (linear layer and softmax).

» Z — P where P hot With dimension / x v.

6. In training, the loss propagates though the network, optimizing all trainable

nparameterc! 8/19

Causal Masking

A causal mask within the self-attention mechanism avoids tokens from influencing tokens

in the future.

» Key idea for (efficient) training of LMs.

» Next-word prediction uses a causal mask (decoders such as GPT). Bidirectional models
use a random mask (e.g.encoders such as BERT).

Your 0.

journey |o:

starts

with [o.

one

step 0.
»

7

starts

with

one

0.

S

0.16

0.16

0.14

0.16}{0.

0.16

0.16

0.14

0.16}(0.

0.16

0.16

0.15

0.16/[0.

0.18

0.16

0.15

0.16|(0.

0.18

0.16

0.15

0.16((0.

Attention weight for input tokens
corresponding to “step” and “Your”

Attention is normalized again row-by-row after masking.

Your | 1.4

journey

starts
with
one

step

g o
1.0
0.55((0.44,
0.27|(0.240.24 (0.23
0.21((0.19([0.19f0.18(0.19|
0.19](0.16((0.16(f0.15(/0.16(/0.15.

«— Masked out
future tokens
for the “Your”
token

© 2024 Sebastian Raschka SO urce

9/19

https://github.com/rasbt/https://github.com/rasbt/LLMs-from-scratch

Remark: Dropout for Self-attention

Dropout means randomly setting some outputs to O during training (regularization).

>
2 o
5 E £t £ o 2
3 5 8 2 2 g
> & w» 2 o6 B
Your | 1.0

journey |0.55||0.44

starts |0.38/|0.30/|0.31

with 10.27(|0.24|0.24(0.23

one [0.21((0.19((0.19{(0.18{0.19

step 0‘19 0.16(|0.16([0.15({0.16/|0.15

/
Attention weight for input Dropout mask
with random

tokens corresponding to o .
“step” and “Your” positions to be
dropped

Your
journey

starts
The dropout mask
applied to the
attention scores will

with

zero out certain
attention scores

2024 Sebastian Raschka SOU rce

10/19

https://github.com/rasbt/https://github.com/rasbt/LLMs-from-scratch

Preparing Sequences for Next Word Prediction

The input context

for the model
or the mode The next generated

1 token

1
The token generated in
1stiteration: |Hello|,|I a: . .
the previous round is
appended to the input for
the next iteration

grows in each
iteration

o (e e

Figure adapted from “Build a Large Language Model From Scratch”

Source
11/19

https://github.com/rasbt/LLMs-workshop-2024

Foundation Language Models

Practical Aspects

Training Data

Any open-source easily accessible text data available is collected.
Epochs elapsed when
training for 300B tokens

Quantity Weight in
(tokens) training mix

Dataset

Common Crawl (filtered) 410 billion 60% 0.44
WebText2 19 billion 22% 2.9
Books1 12 billion 8% 1.9
Books2 55 billion 8% 0.43
Wikipedia 3 billion 3% 34

Example of GPT-3 training data, around 45 TB / 300 Billion tokens of text (Brown et al.,
2020). Weight impacts the number of times a sample is seen in training.

13/19

Model Size is on the Rise

)

—

—

mes in Billion

Model Size (#Para

NLP’s Moore’s Law: Every year model size increases by 10x

800
Google
Switch Transformer
440 1.6T i
080 @Mf
NLP model size and computation are increasing exponentially %’;? 3
720 =' Microsoft 170B
TNLG
rwioia B
360 Google OpenAI Google OpenAI MegatronL.M""'“”
Transformer GPT BERT GPT-2 ~ “gap”
3 0.05B 0.11B 0.34B . ..hBB™7
2017 2018 2019 2020 2021
Year

LLM parameters size over time Source

14/19

https://medium.com/@harishdatalab/unveiling-the-power-of-large-language-models-llms-e235c4eba8a9

Computing Requirements and Power is on the Rise

Training Petaflop/s-days

Total Compute Used During Training

10000

1000

| I II‘
10

,;é” \443’

‘2:\ & Q.
¥ & & Q,«/‘* & OQ«* &

Peta-Flop days used for Model Training (Brown et al., 2020). 1 Peta-flop day is

approximately 3.2 days on a NVIDIA A100.

15/19

Computing and Memory Aspects of LMs
Computing steps:
1. Tokenization
2. Forward pass (computed in parallel for each token)
3. Backward pass (computed in parallel for each token)
4. Parameter update

16/19

Computing and Memory Aspects of LMs
Computing steps:
1. Tokenization
2. Forward pass (computed in parallel for each token)
3. Backward pass (computed in parallel for each token)
4. Parameter update

What elements are typically stored on the GPU?
Note: Example for BERT, to be tested empirically.

16/19

Computing and Memory Aspects of LMs
Computing steps:
1. Tokenization
2. Forward pass (computed in parallel for each token)
3. Backward pass (computed in parallel for each token)
4. Parameter update

What elements are typically stored on the GPU?
Note: Example for BERT, to be tested empirically.
» The model: p parameters float32: 110Mil x 4 = 440MB

16/19

Computing and Memory Aspects of LMs
Computing steps:
1. Tokenization
2. Forward pass (computed in parallel for each token)
3. Backward pass (computed in parallel for each token)
4. Parameter update

What elements are typically stored on the GPU?
Note: Example for BERT, to be tested empirically.
» The model: p parameters float32: 110Mil x 4 = 440MB

» Theinput data: N x [x d, where N is the batch size. For pretraining uses

(N =256 x | = 512) = 128K tokens per batch.
» Data storage : 256 x 512 x 768 x 4bytes(float32) ~ 400.MB for input embedding.

16/19

Computing and Memory Aspects of LMs
Computing steps:
1. Tokenization
2. Forward pass (computed in parallel for each token)
3. Backward pass (computed in parallel for each token)
4. Parameter update

What elements are typically stored on the GPU?
Note: Example for BERT, to be tested empirically.
» The model: p parameters float32: 110Mil x 4 = 440MB

» Theinput data: N x [x d, where N is the batch size. For pretraining uses
(N =256 x | = 512) = 128K tokens per batch.
» Data storage : 256 x 512 x 768 x 4bytes(float32) ~ 400.MB for input embedding.

» Storing activations in the network for backpropagation scales
» linearlyin N
» MLP-part linearly in /
» Attention part quadratically in /.
16/19

How did LLMs Improve in the Past?

» More parameters (transformer blocks,
hidden dimensions, context size)

» More/better data

17/19

https://openlm.ai/chatbot-arena/
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://x.com/ai_memes

How did LLMs Improve in the Past?

» More parameters (transformer blocks,

hidden dimensions, context size)

More/better data

Different self-supervised tasks:
» Next sentence prediction

» Permuted language modelling (predict
word/sentence order in shuffled text)

Not very important: model architecture
details.

Pretrained LM performance
comparison: Link Leaderboard, Link
Open LLM Leaderboard

Nooooo you need convergence proofs
and VC dimension and Lyapunov analysis

Just add

Just add 34% more layers

more layers

Source

17/19

https://openlm.ai/chatbot-arena/
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://x.com/ai_memes

Questions ?

18/19

References

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, llya Sutskever, and Dario Amodei. Language models are
few-shot learners, 2020. URL https://arxiv.org/abs/2005.14165.

19/19

https://arxiv.org/abs/2005.14165

	Training Foundation Models
	Practical Aspects
	References

