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Foundation Models

Goal: Models that generally understand and predict human language well.

Conjecture: If
they are trained with sufficiently much data, they can work well for many possible tasks.

▶ Non-generative / representation transformers:
encoder-only models (e.g., BERT) aim to (only) find valuable latent text representations
(but could also generate text).

▶ Generative learners:
Decoder-only transformers (e.g., GPT) aim to do autoregressive text generation (but
also has valuable latent text representations).

▶ Generative Encoder-decoder transformers (e.g., BART) do both.
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Self-supervised Learning
1. Issue: We want to train a large model using supervised learning.

But how do we get the large amounts of data required for training?

2. Idea: Labels and the prediction target can be the text itself!
We can predict words from surrounding information, by masking words in the text.

3. Remaining setup:
▶ Model class f (x, θ): We use Transformers, which are easy to estimate and could work well

for language. But can be any model.

▶ Loss L is a multi-class classification loss for the masked words.

▶ The learning algorithm is e.g. gradient-based.

We turned a complex problem understanding human language into a multi-class prediction
problem with lots a labeled data.
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Random Masked Language Modelling

Random Masking in BERT. Source
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https://www.researchgate.net/publication/349393574_A_survey_on_training_and_evaluation_of_word_embeddings


Random Masked Language Modelling - Details
1. One-hot encoded input sequence X ∈ Rl×v (or id vector)

2. 15% of input tokens are randomly masked (altered during training:
▶ 80% out of are set to to the special token [Mask]. These will be our prediction targets

later.

▶ Some are replaced by a different token.

3. Input embeddings map to E ∈ Rl×d

4. Transformer processes input embeddings to useful hidden representation Z ∈ Rl×d

(keep dimension).

5. Mask token prediction for [Mask] tokens to the vocabulary v (excluding mask).
▶ 1-layer MLP for classification (linear layer and softmax).

▶ Z 7→ P where Pone hot with dimension l × v .

6. In training, the loss propagates though the network, optimizing all trainable
parameters!
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Causal Masking
A causal mask within the self-attention mechanism avoids tokens from influencing tokens
in the future.
▶ Key idea for (efficient) training of LMs.

▶ Next-word prediction uses a causal mask (decoders such as GPT). Bidirectional models
use a random mask (e.g.encoders such as BERT).

Source
Attention is normalized again row-by-row after masking.
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https://github.com/rasbt/https://github.com/rasbt/LLMs-from-scratch


Remark: Dropout for Self-attention
Dropout means randomly setting some outputs to 0 during training (regularization).

Source
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https://github.com/rasbt/https://github.com/rasbt/LLMs-from-scratch


Preparing Sequences for Next Word Prediction

Source
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https://github.com/rasbt/LLMs-workshop-2024


Foundation Language Models
Practical Aspects
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Training Data

Any open-source easily accessible text data available is collected.

Example of GPT-3 training data, around 45 TB / 300 Billion tokens of text (Brown et al.,
2020). Weight impacts the number of times a sample is seen in training.
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Model Size is on the Rise

LLM parameters size over time Source
14 / 19

https://medium.com/@harishdatalab/unveiling-the-power-of-large-language-models-llms-e235c4eba8a9


Computing Requirements and Power is on the Rise

Peta-Flop days used for Model Training (Brown et al., 2020). 1 Peta-flop day is
approximately 3.2 days on a NVIDIA A100.
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Computing and Memory Aspects of LMs
Computing steps:

1. Tokenization
2. Forward pass (computed in parallel for each token)
3. Backward pass (computed in parallel for each token)
4. Parameter update

What elements are typically stored on the GPU?
Note: Example for BERT, to be tested empirically.
▶ The model: p parameters float32: 110Mil × 4 = 440MB

▶ The input data: N × l × d , where N is the batch size. For pretraining uses
(N = 256 × l = 512) = 128K tokens per batch.
▶ Data storage : 256 × 512 × 768 × 4bytes(float32) ≈ 400.MB for input embedding.

▶ Storing activations in the network for backpropagation scales
▶ linearly in N
▶ MLP-part linearly in l
▶ Attention part quadratically in l .
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How did LLMs Improve in the Past?
▶ More parameters (transformer blocks,

hidden dimensions, context size)

▶ More/better data

▶ Different self-supervised tasks:
▶ Next sentence prediction

▶ Permuted language modelling (predict
word/sentence order in shuffled text)

▶ Not very important: model architecture
details.

▶ Pretrained LM performance
comparison: Link Leaderboard, Link
Open LLM Leaderboard

Source
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https://openlm.ai/chatbot-arena/
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://x.com/ai_memes


How did LLMs Improve in the Past?
▶ More parameters (transformer blocks,

hidden dimensions, context size)

▶ More/better data

▶ Different self-supervised tasks:
▶ Next sentence prediction

▶ Permuted language modelling (predict
word/sentence order in shuffled text)

▶ Not very important: model architecture
details.

▶ Pretrained LM performance
comparison: Link Leaderboard, Link
Open LLM Leaderboard

Source

17 / 19

https://openlm.ai/chatbot-arena/
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://x.com/ai_memes


Questions ?
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