
Understanding and Training Language Models:
Statistical Learning and Neural Networks

Erik-Jan Senn
Faculty of Mathematics and Statistics, University of St. Gallen

CSH Autumn School at University of Hohenheim
September/October 2024

1 / 21

Where are we?
Text Document(s):

Without labels

A) Feature
extraction
approach

Task-specific
Model

(E.g. Sentiment
Classifier)

Output of Pipeline
 a numeric/textual

prediction

Tokenizer

Feed-forward
Neural

NetworkPositional
Embedding*

Pre-TrainingText
pre-processing

Masked
language

modelling /
next word
prediction

Foundation Language Model (e.g. BERT, GPT)

Token
Embedding*

Self-Attention

Model Class
(Focus: Transformer)

Text Document(s)
With labels

B) Fine-tuning
approach

01xx

1

Language Modelling Pipeline
2 / 21

Roadmap

Introduction to Statistical Learning

Neural Networks

3 / 21

Statistical Learning and NeuralNetworks
A Tiny Introduction to Statistical

Learning

4 / 21

Supervised Learning (Simplified)
Goal: Find a function f : X → Y from labeled training data (xi , yi) that makes goodpredictions of y for previously unseen data samples from the population distribution.

▶ The model (hypothesis class) f (X ; θ) ∈ H: A learnable parameterized function used tomake predictions f (x; θ̂) = ŷ .
▶ The loss function L(Y , Ŷ) evaluates how good a prediction is.
▶ The learning algorithm estimates the optimal model parameters θ̂ that minimize the

sample loss, instead of minimizing the unobservable population loss (empirical riskminimization).

5 / 21

Supervised Learning (Simplified)
Goal: Find a function f : X → Y from labeled training data (xi , yi) that makes goodpredictions of y for previously unseen data samples from the population distribution.
▶ The model (hypothesis class) f (X ; θ) ∈ H: A learnable parameterized function used tomake predictions f (x; θ̂) = ŷ .
▶ The loss function L(Y , Ŷ) evaluates how good a prediction is.
▶ The learning algorithm estimates the optimal model parameters θ̂ that minimize the

sample loss, instead of minimizing the unobservable population loss (empirical riskminimization).

5 / 21

Example: Logistic Regression for Tumor ClassificationSetting
▶ X ∈ Rk : Tumor features (e.g., radius, texture, perimeter, area, smoothness)
▶ Y ∈ {0,1}: Tumor is benign (0) or malignant (1)
▶ Training sample: N tumor patients draw i.i.d. from the population of all tumor patients.

Supervised learning
▶ Loss function for binary classification

L(Y , Ŷ) = −E(X ,Y)

[
(Y log(p(Ŷ = 1)) + (1 − Y) log(p(Ŷ = 0))

]
▶ Logistic model for conditional probabilities

f (x, θ = (w,b)) = σ(wT x + b) = p(y = 1|x),with the sigmoid function σ(z) = 1
1+e−z

▶ Learning algorithm: Any optimizer such as gradient descent to solve this (convex)optimization problem.
min
w,b

L(w,b) = − 1
N

N

∑
i=1

[
yi log(σ(wT xi + b)) + (1 − yi) log(1 − σ(wT xi + b))

]

6 / 21

Example: Logistic Regression for Tumor ClassificationSetting
▶ X ∈ Rk : Tumor features (e.g., radius, texture, perimeter, area, smoothness)
▶ Y ∈ {0,1}: Tumor is benign (0) or malignant (1)
▶ Training sample: N tumor patients draw i.i.d. from the population of all tumor patients.

Supervised learning
▶ Loss function for binary classification

L(Y , Ŷ) = −E(X ,Y)

[
(Y log(p(Ŷ = 1)) + (1 − Y) log(p(Ŷ = 0))

]
▶ Logistic model for conditional probabilities

f (x, θ = (w,b)) = σ(wT x + b) = p(y = 1|x),with the sigmoid function σ(z) = 1
1+e−z

▶ Learning algorithm: Any optimizer such as gradient descent to solve this (convex)optimization problem.
min
w,b

L(w,b) = − 1
N

N

∑
i=1

[
yi log(σ(wT xi + b)) + (1 − yi) log(1 − σ(wT xi + b))

]
6 / 21

A Learning Algorithm: Gradient DescentRequirements
▶ L is differentiable with respect to θ and gradient is sufficiently smooth.
▶ Convexity of L to find global minimum

The algorithm
▶ Pick step size (learning rate) η, tolerance ϵ and starting values θ0.
▶ Iteratively update the θ by taking a step in the direction of the negative gradient of theloss on the full training sample:

θk+1 := θk − η∇θL(y , ŷ(θk))

where ∇θL(y , ŷ(θk)) is the empirical gradient of the loss with respect to the modelparameters.
▶ Stop when e.g. when gradients do not change much ||∇θL(y , ŷ(θk))|| < ϵ.

7 / 21

A Learning Algorithm: Gradient DescentRequirements
▶ L is differentiable with respect to θ and gradient is sufficiently smooth.
▶ Convexity of L to find global minimum

The algorithm
▶ Pick step size (learning rate) η, tolerance ϵ and starting values θ0.
▶ Iteratively update the θ by taking a step in the direction of the negative gradient of theloss on the full training sample:

θk+1 := θk − η∇θL(y , ŷ(θk))

where ∇θL(y , ŷ(θk)) is the empirical gradient of the loss with respect to the modelparameters.
▶ Stop when e.g. when gradients do not change much ||∇θL(y , ŷ(θk))|| < ϵ.

7 / 21

A (slightly adapted) Learning Algorithm: Stochastic Gradient DescentRequirements
▶ L is differentiable with respect to θ and gradient is sufficiently smooth.
▶ Convexity of L to find global minimum.SGD can avoid some local minima without convexity, but no guarantees.

The algorithm
▶ Pick step size (learning rate) η, tolerance ϵ and starting values θ0.
▶ Iteratively update the θ by taking a step in the direction of the negative gradient of theloss on a single (random) observation of the training sample:

θk+1 := θk − η∇θL(y , ŷ(θk))

where ∇θL(y , ŷ(θk)) is the empirical gradient of the loss with respect to the modelparameters.
▶ Stop when e.g. when gradients do not change much ||∇θL(y , ŷ(θk))|| < ϵ.Sometimes faster than GD, e.g. with large datasets. 8 / 21

Example: Logistic Regression with Gradient DescentCan we learn the best flogistic(θ) using (stochastic) gradient descent?+⃝ L is differentiable with respect to θ.
+⃝ Convexity of L to find global minimum.

Yes!
Update rule:

wk+1 := wk − η
∂L

∂wk
, bk+1 := bk − η

∂L
∂bkwhere the gradients for one observation are:

∂L
∂wk

=
∂L
∂L · ∂L

∂ŷi
· ∂ŷi

∂(wT xi + b)
· ∂(wT xi + b)

∂wk
= (ŷi − yi) · xi,k

∂L
∂b

= (ŷi − yi) · 1

The gradients are computed using the chain rule: dz
dx = dz

dy · dy
dx .

9 / 21

Example: Logistic Regression with Gradient DescentCan we learn the best flogistic(θ) using (stochastic) gradient descent?+⃝ L is differentiable with respect to θ.
+⃝ Convexity of L to find global minimum.Yes!

Update rule:
wk+1 := wk − η

∂L
∂wk

, bk+1 := bk − η
∂L
∂bkwhere the gradients for one observation are:

∂L
∂wk

=
∂L
∂L · ∂L

∂ŷi
· ∂ŷi

∂(wT xi + b)
· ∂(wT xi + b)

∂wk
= (ŷi − yi) · xi,k

∂L
∂b

= (ŷi − yi) · 1

The gradients are computed using the chain rule: dz
dx = dz

dy · dy
dx .

9 / 21

Example: Logistic Regression with Gradient DescentCan we learn the best flogistic(θ) using (stochastic) gradient descent?+⃝ L is differentiable with respect to θ.
+⃝ Convexity of L to find global minimum.Yes!

Update rule:
wk+1 := wk − η

∂L
∂wk

, bk+1 := bk − η
∂L
∂bkwhere the gradients for one observation are:

∂L
∂wk

=
∂L
∂L · ∂L

∂ŷi
· ∂ŷi

∂(wT xi + b)
· ∂(wT xi + b)

∂wk
= (ŷi − yi) · xi,k

∂L
∂b

= (ŷi − yi) · 1

The gradients are computed using the chain rule: dz
dx = dz

dy · dy
dx .

9 / 21

Overfitting
Overfitting: The model fits the training data too well, leading to worse performance onunseen (test) data.

Predictions and true values Source

10 / 21

https://medium.com/@cs.sabaribalaji/overfitting-6c1cd9af589

Overfitting
Overfitting: The model fits the training data too well, leading to worse performance onunseen (test) data.

Predictions and true values Source Loss on training and test data Source

10 / 21

https://medium.com/@cs.sabaribalaji/overfitting-6c1cd9af589
https://www.analyticsvidhya.com/blog/2020/02/underfitting-overfitting-best-fitting-machine-learning/

Overfitting
Overfitting: The model fits the training data too well, leading to worse performance onunseen (test) data.

Predictions and true values Source Loss on training and test data Source
We want the best model for unseen test data.Therefore, controlling for overfitting is very important - we use regularization.

10 / 21

https://medium.com/@cs.sabaribalaji/overfitting-6c1cd9af589
https://www.analyticsvidhya.com/blog/2020/02/underfitting-overfitting-best-fitting-machine-learning/

Statistical Learning and NeuralNetworks
Neural Networks

11 / 21

Neural Networks

▶ (Artificial) neural networks are statistical models inspired by the functionality of thehuman brain.
▶ Feed-forward neural networks are universal function approximators:

Any continuous function can be approximated up to arbitrary precision by a feed-forward
neural network.

▶ The flexible functional form allows to model for complex non-linear relationships.

12 / 21

Logistic Regression as Starting Point

Logistic regression for binary classification.Source
13 / 21

https://github.com/dvgodoy/dl-visuals

Multilayer Perceptron

Multilayer perceptron for binary classification with one hidden layer.Source
14 / 21

https://github.com/dvgodoy/dl-visuals

Multilayer Perceptron

Multilayer perceptron for binary classification with one hidden layer.Source
14 / 21

https://github.com/dvgodoy/dl-visuals

Multilayer Perceptron

Multilayer perceptron for binary classification with 24 input neurons, two hidden layersand more hidden neurons. Source
14 / 21

https://github.com/dvgodoy/dl-visuals

Activation Functions
Activation functions conduct a non-linear transformation at each neuron in the hiddenlayers.

Sigmoid function Source
g(x) = σ(x) = 1

1+e−x

Gradient: d
dx g(x) = σ(x)(1 − σ(x))

Rectified linear unit (ReLu) function Source
g(x) = max(0, x)

Gradient: d
dx g(x) = 1x>0 ∀x ̸= 0

15 / 21

https://github.com/dvgodoy/dl-visuals
https://github.com/dvgodoy/dl-visuals

Multilayer Perceptron with one Hidden Layer - MathematicalFormulation of the Forward PassA multilayer perceptron with one hidden layer f : RN×K → RN can be expressed as:
ŷ = f (X) = g1(g0(XW0 + b0)W1 + b1)

▶ N , the number of observations,
▶ K , the number of features,
▶ NZ , the number of nodes in the hidden layer,
▶ X, a N × K matrix of data inputs,
▶ y, a column vector of targets with N elements,
▶ W0 (W1), a K × NZ (NZ × 1) weight matrix (slope parameters) which passes the input data to the hiddenlayer (hidden representation to the output layer) before activation,
▶ b0 (b1) which is column vector with NZ (1) elements of additive biases (intercepts) applied beforeactivation,
▶ g0 : R → R (g1 : R → R), an activation function that is applied element-wise to the output of the firstlayer (second layer).

This model has K · NZ + NZ · 1 + NZ + 1 trainable parameters (from W0, W1, b0, b1). 16 / 21

Training the Neural Network
Can we learn the best f NN using (stochastic) gradient descent?

+⃝ L is differentiable with respect to θ.
-⃝ No convexity of L to find the global minimum.

Hopefully its good enough.We try to avoid local minima and saddle points e.g. by using SGD, different starting values,learning rate schedulers, ...
Gradient computation uses the backpropagation algorithm, an efficient version of the
multivariate chain rule, to compute gradients propagating step-by-step from output (the
back) to input.
Useful resources if time allows:
▶ Slides by Geiger (2024) on backpropagation: Link
▶ Interactive visualization of how neural networks learn: Link

17 / 21

https://drive.google.com/file/d/1OlpS7rFXJ-4RS-eLswS9tAAN6tCPFlG3/view
https://playground.tensorflow.org/

Training the Neural Network
Can we learn the best f NN using (stochastic) gradient descent?

+⃝ L is differentiable with respect to θ.
-⃝ No convexity of L to find the global minimum.

Hopefully its good enough.We try to avoid local minima and saddle points e.g. by using SGD, different starting values,learning rate schedulers, ...

Gradient computation uses the backpropagation algorithm, an efficient version of the
multivariate chain rule, to compute gradients propagating step-by-step from output (the
back) to input.
Useful resources if time allows:
▶ Slides by Geiger (2024) on backpropagation: Link
▶ Interactive visualization of how neural networks learn: Link

17 / 21

https://drive.google.com/file/d/1OlpS7rFXJ-4RS-eLswS9tAAN6tCPFlG3/view
https://playground.tensorflow.org/

Training the Neural Network
Can we learn the best f NN using (stochastic) gradient descent?

+⃝ L is differentiable with respect to θ.
-⃝ No convexity of L to find the global minimum.

Hopefully its good enough.We try to avoid local minima and saddle points e.g. by using SGD, different starting values,learning rate schedulers, ...
Gradient computation uses the backpropagation algorithm, an efficient version of the
multivariate chain rule, to compute gradients propagating step-by-step from output (the
back) to input.

Useful resources if time allows:
▶ Slides by Geiger (2024) on backpropagation: Link
▶ Interactive visualization of how neural networks learn: Link

17 / 21

https://drive.google.com/file/d/1OlpS7rFXJ-4RS-eLswS9tAAN6tCPFlG3/view
https://playground.tensorflow.org/

Training the Neural Network
Can we learn the best f NN using (stochastic) gradient descent?

+⃝ L is differentiable with respect to θ.
-⃝ No convexity of L to find the global minimum.

Hopefully its good enough.We try to avoid local minima and saddle points e.g. by using SGD, different starting values,learning rate schedulers, ...
Gradient computation uses the backpropagation algorithm, an efficient version of the
multivariate chain rule, to compute gradients propagating step-by-step from output (the
back) to input.
Useful resources if time allows:
▶ Slides by Geiger (2024) on backpropagation: Link
▶ Interactive visualization of how neural networks learn: Link

17 / 21

https://drive.google.com/file/d/1OlpS7rFXJ-4RS-eLswS9tAAN6tCPFlG3/view
https://playground.tensorflow.org/

Forward pass, backward pass and computation

Training
▶ Forward pass: f (x, θ) → y

▶ Backward pass: (first-order) gradient computation from the back using backpropagation
▶ Update θ̂ according to optimizer step-size (and specifics).

18 / 21

Forward pass, backward pass and computation
Training
▶ Forward pass: f (x, θ) → y

▶ The output value at each neuron (activation) in one layer is computed (in parallel) andpropagated forward, layers are computed sequentially.
▶ At the same time, autograd creates the computational graph (DAG) and the activations(zi,j) are saved (if required for backward pass).
▶ Note for torch: Gradient can be computed only if Tensor.requires grad is True.Required to later allow backpropagation through this tensor. Not only for trainableparameters!

▶ Backward pass: (first-order) gradient computation from the back using backpropagation
▶ Update θ̂ according to optimizer step-size (and specifics).

18 / 21

Forward pass, backward pass and computation
Training
▶ Forward pass: f (x, θ) → y

▶ Backward pass: (first-order) gradient computation from the back usingbackpropagation
▶ autograd reverts the order of computation from the forward pass by sequentiallystepping from back to front layers and computing gradients by the (in parallel for the samelayer), using the stored activations.
▶ In torch, the gradients of components are supplied by the backward methods, which areimplemented for most standard functions (e.g. ReLu (0/1),Sigmoid (σ(1 − σ), linear slope

parameters w (xi)). For custom functions, need to define gradient manually (as symbolic ornumeric derivative).
▶ Update θ̂ according to optimizer step-size (and specifics).

18 / 21

Forward pass, backward pass and computation

Training
▶ Forward pass: f (x, θ) → y

▶ Backward pass: (first-order) gradient computation from the back using backpropagation
▶ Update θ̂ according to optimizer step-size (and specifics).

Inference (means prediction phase in ML) require only forward pass. E.g. for featureextraction from LMs.

18 / 21

Regularization and Hyperparameters
Neural networks can differ in many components:
▶ Regularization: e.g. number of epochs, early stopping, L1 or L2 norm penalty, dropout.Avoids overfitting, which is important for models with many trainable parameters.
▶ Training: learning rate, data normalization / transformation / augmentation, weightinitialization.
▶ Architectures: e.g. standard multi-layer perceptron with different number of neuronsand layers, convolutional neural networks (mainly for images), recurrent neuralnetworks (time series), transformer models (most current LMs).

These choices influence:
▶ model performance on a certain task,
▶ how long it takes to train the model.

19 / 21

Regularization and Hyperparameters
Neural networks can differ in many components:
▶ Regularization: e.g. number of epochs, early stopping, L1 or L2 norm penalty, dropout.Avoids overfitting, which is important for models with many trainable parameters.
▶ Training: learning rate, data normalization / transformation / augmentation, weightinitialization.
▶ Architectures: e.g. standard multi-layer perceptron with different number of neuronsand layers, convolutional neural networks (mainly for images), recurrent neuralnetworks (time series), transformer models (most current LMs).

These choices influence:
▶ model performance on a certain task,
▶ how long it takes to train the model.

19 / 21

Questions ?

20 / 21

References

Andreas Geiger. Deep learning lecture chapter 2 on backpropagation.
https://drive.google.com/file/d/1OlpS7rFXJ-4RS-eLswS9tAAN6tCPFlG3/view,2024. Accessed: 27.09.2024.

21 / 21

https://drive.google.com/file/d/1OlpS7rFXJ-4RS-eLswS9tAAN6tCPFlG3/view

	Introduction to Statistical Learning
	Neural Networks
	References

