Understanding and Training Language Models:
Statistical Learning and Neural Networks

Erik-Jan Senn

Faculty of Mathematics and Statistics, University of St. Gallen

CSH Autumn School at University of Hohenheim
September/October 2024

1/21

Where are we?

Text Document(s):
Without labels

Text
e

Tokenizer

Token

Foundation Language Model (

Self-Attention

Embedding*

Positional
Embedding*

Feed-forward
Neural
Network

Masked
language
modelling /
next word
prediction

l

1

t Document(s)
With labels

Task-specific

A) Feature
extraction
approach

B) Fine-tuning
approach

Output of

1 a numeric/te
predic

Language Modelling Pipeline

2/21

Roadmap

Introduction to Statistical Learning

Neural Networks

3/21

Statistical Learning and Neural
Networks

A Tiny Introduction to Statistical
Learning

Supervised Learning (Simplified)

Goal: Find a function f : X — Y from labeled training data (x;, y;) that makes good
predictions of y for previously unseen data samples from the population distribution.

5/21

Supervised Learning (Simplified)

Goal: Find a function f : X — Y from labeled training data (x;, y;) that makes good
predictions of y for previously unseen data samples from the population distribution.

» The model (hypothesis class) f(X; 8) € H: A learnable parameterized function used to
make predictions f(x; 8) = §.

» The loss function L(Y, V) evaluates how good a prediction is.
» The learning algorithm estimates the optimal model parameters 0 that minimize the

sample loss, instead of minimizing the unobservable population loss (empirical risk
minimization).

5/21

Example: Logistic Regression for Tumor Classification
Setting
> X € RX: Tumor features (e.g., radius, texture, perimeter, area, smoothness)
» Y € {0, 1}: Tumor is benign (0) or malignant (1)
» Training sample: N tumor patients draw i.i.d. from the population of all tumor patients.

6/21

Example: Logistic Regression for Tumor Classification
Setting
> X € RX: Tumor features (e.g., radius, texture, perimeter, area, smoothness)
» Y € {0, 1}: Tumor is benign (0) or malignant (1)
» Training sample: N tumor patients draw i.i.d. from the population of all tumor patients.
Supervised learning
» Loss function for binary classification
LY, ¥) = ~Egxy) |(Yiog(p(¥ = 1))+ (1= ¥)log(p(¥ = 0))]
» Logistic model for conditional probabilities
f(x,6 = (w, b)) = c(W'x+b) = p(y = 1]x),
with the sigmoid function ¢(z) = 5=
» Learning algorithm: Any optimizer such as gradient descent to solve this (convex)
optimization problem.

|yilog(e(Wx;+ b)) + (1= y;) log(1 — o(W'x; + b)) |

==
M™M=

min £L(w, b) = —
w,b

i=1

6/21

A Learning Algorithm: Gradient Descent

Requirements
> [is differentiable with respect to 0 and gradient is sufficiently smooth.

» Convexity of £ to find global minimum

7/21

A Learning Algorithm: Gradient Descent

Requirements
> [is differentiable with respect to 0 and gradient is sufficiently smooth.
» Convexity of £ to find global minimum

The algorithm

» Pick step size (learning rate) 7, tolerance € and starting values 6.

> |teratively update the 6 by taking a step in the direction of the negative gradient of the
loss on the full training sample:

Oki1:= 0k — VoL (y, J(6k))

where VoL(y, y(6x)) is the empirical gradient of the loss with respect to the model
parameters.

» Stop when e.g. when gradients do not change much ||VoL(y, y(6x))|| < e.

7/21

A (slightly adapted) Learning Algorithm: Stochastic Gradient Descent
Requirements
> L is differentiable with respect to 6 and gradient is sufficiently smooth.

» Convexity of £ to find global minimum.
SGD can avoid some local minima without convexity, but no guarantees.

The algorithm
» Pick step size (learning rate) 7, tolerance e and starting values 6.

> lteratively update the 6 by taking a step in the direction of the negative gradient of the
loss on a single (random) observation of the training sample:

Oki1:= 0k —11VoL(y, J(6k))

where Vo L(y, y(6x)) is the empirical gradient of the loss with respect to the model
parameters.

» Stop when e.g. when gradients do not change much ||V L(y, 7(0x))|| < e.

Sometimes faster than GD, e.g. with large datasets.
8/21

Example: Logistic Regression with Gradient Descent
Can we learn the best figisic(6) using (stochastic) gradient descent?
® L is differentiable with respect to 6.

® Convexity of L to find global minimum.

9/21

Example: Logistic Regression with Gradient Descent

Can we learn the best figisic(6) using (stochastic) gradient descent?
® L is differentiable with respect to 6.

® Convexity of L to find global minimum.

Yes!
Update rule:
Wi ' =Wy — 17—, byyq:=by— oL
k41 = Wk ’7awk' k+1 = DOk Wabk
where the gradients for one observation are:
oL dL oL Yy o(w'x; + b) e N
awe oL oy a(wTx; + b) owe ~ JiT i) Xk
oL

%—(}A’i—yi)'1

9/21

Example: Logistic Regression with Gradient Descent
Can we learn the best figisic(6) using (stochastic) gradient descent?
® L is differentiable with respect to 6.

® Convexity of L to find global minimum.

Yes!
Update rule:
Wi ' =Wy — 17—, byyq:=by— oL
k+1 = Wk ”awk' k+1 = DOk Wabk
where the gradients for one observation are:
oL dL oL Yy o(w'x; + b) o N
awe oL oy a(wTx; + b) owe ~ JiT i) Xk
oL N
a5 = Ji—yi)-1

The gradients are computed using the chain rule: % = g—j @

9/21

Overfitting

Overfitting: The model fits the training data too well, leading to worse performance on
unseen (test) data.

codefinity

2 2)
MSE : 1.49 MSE : 0.76 MSE : 0.29

Underfitting Good fit Overfitting

Predictions and true values Source

10/21

https://medium.com/@cs.sabaribalaji/overfitting-6c1cd9af589

Overfitting

Overfitting: The model fits the training data too well, leading to worse performance on

unseen (test) data.

codefinity

MSE : 1.49 MSE : 0.76 MSE : 0.29

Underfitting Good fit Overfitting

Predictions and true values Source

< Underfitting Overfitting >

Best Fit

Error

Model “complexity”

Loss on training and test data Source

10/21

https://medium.com/@cs.sabaribalaji/overfitting-6c1cd9af589
https://www.analyticsvidhya.com/blog/2020/02/underfitting-overfitting-best-fitting-machine-learning/

Overfitting

Overfitting: The model fits the training data too well, leading to worse performance on
unseen (test) data.

codefinity '
< Underfitting | Overfitting >

Bes?i Fit /

~—— —

Error

f Trainin Error

MSE: 1.49 MSE: 0.76 MSE : 0.29

Model “complexity”
Underfitting Good fit Overfitting

Predictions and true values Source Loss on training and test data Source

We want the best model for unseen test data.
Therefore, controlling for overfitting is very important - we use regularization.

10/21

https://medium.com/@cs.sabaribalaji/overfitting-6c1cd9af589
https://www.analyticsvidhya.com/blog/2020/02/underfitting-overfitting-best-fitting-machine-learning/

Statistical Learning and Neural
Networks

Neural Networks

Neural Networks

» (Artificial) neural networks are statistical models inspired by the functionality of the
human brain.

» Feed-forward neural networks are universal function approximators:
Any continuous function can be approximated up to arbitrary precision by a feed-forward

neural network.

» The flexible functional form allows to model for complex non-linear relationships.

12/21

Logistic Regression as Starting Point

c;(z) i

Input Layer Output Layer Sigmoid

Logistic regression for binary classification.
Source
13/21

https://github.com/dvgodoy/dl-visuals

Multilayer Perceptron

_2;1 y
o(z1)
Hidden Activation #0
Input Layer Layer #0 f(2) Output Layer Sigmoid

Multilayer perceptron for binary classification with one hidden layer.
Source

14/21

https://github.com/dvgodoy/dl-visuals

Multilayer Perceptron

Activated

Original Transformed

N
v Mo
e \’ﬁ

Logistic Regression

0 WoX
O\ 0 71 3%
@/ wix o(z1)
: N
Hidden Activation #0
Input Layer Layer #0 f(2) Output Layer Sigmoid

Multilayer perceptron for binary classification with one hidden layer.
Source

14/21

https://github.com/dvgodoy/dl-visuals

Multilayer Perceptron

Z Y

a(z;)

Sigmoid

Hidden Hidden
Input Layer Layer #0 Layer #1 Output Layer

Multilayer perceptron for binary classification with 24 input neurons, two hidden layers
and more hidden neurons. Source

14/21

https://github.com/dvgodoy/dl-visuals

Activation Functions

Activation functions conduct a non-linear transformation at each neuron in the hidden
layers.

Sigmoid function Source Rectified linear unit (ReLu) function Source

9(x) = 0 (x) = 15 g(x) = max(0,)

Gradient: L g(x) = o(x)(1 — o(x)) Gradient: £ g(x) = =0 ¥x # 0

15/21

https://github.com/dvgodoy/dl-visuals
https://github.com/dvgodoy/dl-visuals

Multilayer Perceptron with one Hidden Layer - Mathematical

Formulation of the Forward Pass
A multilayer perceptron with one hidden layer f : RVN*K — RN can be expressed as:

¥ = f(X) = 91(90o(XWq + bo)W; + by)

N, the number of observations,

K, the number of features,

Nz, the number of nodes in the hidden layer,
X, a N x K matrix of data inputs,

Yy, a column vector of targets with N elements,

Wy (W), a K x Nz (N7 x 1) weight matrix (slope parameters) which passes the input data to the hidden
layer (hidden representation to the output layer) before activation,

bg (b) which is column vector with N> (1) elements of additive biases (intercepts) applied before
activation,

> go:R — R (gs : R — R), an activation function that is applied element-wise to the output of the first
layer (second layer).

This model has K - Nz + Nz - 1 + Nz + 1 trainable parameters (from W, W4, by, b1).

vVvyvVvyyvYyYyvyy

v

16/21

Training the Neural Network

Can we learn the best fNN using (stochastic) gradient descent?

@ L is differentiable with respect to 6.
(> No convexity of £ to find the global minimum.

17/21

https://drive.google.com/file/d/1OlpS7rFXJ-4RS-eLswS9tAAN6tCPFlG3/view
https://playground.tensorflow.org/

Training the Neural Network

Can we learn the best fNN using (stochastic) gradient descent?
® L is differentiable with respect to 0.
(> No convexity of £ to find the global minimum.

Hopefully its good enough.
We try to avoid local minima and saddle points e.g. by using SGD, different starting values,
learning rate schedulers, ...

17/21

https://drive.google.com/file/d/1OlpS7rFXJ-4RS-eLswS9tAAN6tCPFlG3/view
https://playground.tensorflow.org/

Training the Neural Network

Can we learn the best fNN using (stochastic) gradient descent?
® L is differentiable with respect to 0.
(> No convexity of £ to find the global minimum.

Hopefully its good enough.
We try to avoid local minima and saddle points e.g. by using SGD, different starting values,
learning rate schedulers, ...

Gradient computation uses the backpropagation algorithm, an efficient version of the
multivariate chain rule, to compute gradients propagating step-by-step from output (the
back) to input.

17/21

https://drive.google.com/file/d/1OlpS7rFXJ-4RS-eLswS9tAAN6tCPFlG3/view
https://playground.tensorflow.org/

Training the Neural Network

Can we learn the best fNN using (stochastic) gradient descent?
® L is differentiable with respect to 0.
(> No convexity of £ to find the global minimum.

Hopefully its good enough.
We try to avoid local minima and saddle points e.g. by using SGD, different starting values,
learning rate schedulers, ...

Gradient computation uses the backpropagation algorithm, an efficient version of the
multivariate chain rule, to compute gradients propagating step-by-step from output (the
back) to input.
Useful resources if time allows:

» Slides by Geiger (2024) on backpropagation: Link

» Interactive visualization of how neural networks learn: Link

17/21

https://drive.google.com/file/d/1OlpS7rFXJ-4RS-eLswS9tAAN6tCPFlG3/view
https://playground.tensorflow.org/

Forward pass, backward pass and computation

Training
» Forward pass: f(X,0) — y

» Backward pass: (first-order) gradient computation from the back using backpropagation

» Update § according to optimizer step-size (and specifics).

18/21

Forward pass, backward pass and computation

Training
» Forward pass: f(x,0) — y

» The output value at each neuron (activation) in one layer is computed (in parallel) and
propagated forward, layers are computed sequentially.

> At the same time, autograd creates the computational graph (DAG) and the activations
(z; ;) are saved (if required for backward pass).

> Note for torch: Gradient can be computed only if Tensor.requires_grad is True.

Required to later allow backpropagation through this tensor. Not only for trainable
parameters!

» Backward pass: (first-order) gradient computation from the back using backpropagation

» Update § according to optimizer step-size (and specifics).

18/21

Forward pass, backward pass and computation

Training
» Forward pass: f(X,0) — y

» Backward pass: (first-order) gradient computation from the back using
backpropagation
» autograd reverts the order of computation from the forward pass by sequentially
stepping from back to front layers and computing gradients by the (in parallel for the same
layer), using the stored activations.

» In torch, the gradients of components are supplied by the backward methods, which are
implemented for most standard functions (e.g. ReLu (0/1),Sigmoid (c(1 — o), linear slope
parameters w (x;)). For custom functions, need to define gradient manually (as symbolic or
numeric derivative).

» Update § according to optimizer step-size (and specifics).

18/21

Forward pass, backward pass and computation

Training
» Forward pass: f(X,0) — y

» Backward pass: (first-order) gradient computation from the back using backpropagation

» Update @ according to optimizer step-size (and specifics).

Inference (means prediction phase in ML) require only forward pass. E.g. for feature
extraction from LMs.

18/21

Regularization and Hyperparameters

Neural networks can differ in many components:

» Regularization: e.g. number of epochs, early stopping, L1 or L2 norm penalty, dropout.
Avoids overfitting, which is important for models with many trainable parameters.

» Training: learning rate, data normalization / transformation / augmentation, weight
initialization.

» Architectures: e.g. standard multi-layer perceptron with different number of neurons

and layers, convolutional neural networks (mainly for images), recurrent neural
networks (time series), transformer models (most current LMs).

19/21

Regularization and Hyperparameters

Neural networks can differ in many components:

» Regularization: e.g. number of epochs, early stopping, L1 or L2 norm penalty, dropout.
Avoids overfitting, which is important for models with many trainable parameters.

» Training: learning rate, data normalization / transformation / augmentation, weight
initialization.

» Architectures: e.g. standard multi-layer perceptron with different number of neurons
and layers, convolutional neural networks (mainly for images), recurrent neural
networks (time series), transformer models (most current LMs).

These choices influence:
» model performance on a certain task,

» how long it takes to train the model.

19/21

Questions ?

20/21

References

Andreas Geiger. Deep learning lecture chapter 2 on backpropagation.
https://drive.google.com/file/d/101pS7rFXJ-4RS-eLswS9tAAN6tCPF1G3/view,
2024. Accessed: 27.09.2024.

21/21

https://drive.google.com/file/d/1OlpS7rFXJ-4RS-eLswS9tAAN6tCPFlG3/view

	Introduction to Statistical Learning
	Neural Networks
	References

