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Self-attention and Transformers

Self-attention



What is attention?

Motivating example:
Yesterday, my friends went to the cinema because the weather was nasty.
The movie had amazing visuals, but the story was quite boring.
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What is attention?

Motivating example:
Yesterday, my friends went to the cinema because the weather was nasty.
The movie had amazing visuals, but the story was quite boring.

Possible task:
» How many adjectives are in this sentence? 3
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What is attention?

Motivating example:
Yesterday, my friends went to the cinema because the weather was nasty.
The movie had amazing visuals, but the story was quite boring.

Possible task:
» Is this movie review positive, negative, or neutral? neutral
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What is attention?

Motivating example:
Yesterday, my friends went to the cinema because the weather was nasty.
The movie had amazing visuals, but the story was quite boring.

Possible task:
> Is it going to rain today? pretty likely
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What is attention?

Motivating example:
Yesterday, my friends went to the cinema because the weather was nasty.
The movie had amazing visuals, but the story was quite boring.

We observe:

» Some parts of the sequence are more important in general (e.g., the was never
highlighted).

» Each task requires looking at different tokens in the sequence.

5/22



What is attention?

Motivating example:

Yesterday, my friends went to the cinema because the weather was nasty.
The movie had amazing visuals, but the story was quite boring.

We observe:

» Some parts of the sequence are more important in general (e.g., the was never
highlighted).

» Each task requires looking at different tokens in the sequence.

Idea of attention: Allow tokens to interact (to represent and learn more general concepts,
interactions), by paying attention to other tokens.
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Self-attention Matrix
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Self-attention Matrix

» Aisa/ x linteraction matrix for tokens within a

sequence.
> Red element Ay 3: This
» How much attention does token cat pay to s
token my (one-directional)? my
cat
» More specific: How much will the output
representation of the token cat be influenced
by the representation of token my. S_he
1S
> element Az 4: How much attention does cute

token my pay to token cat (one-directional)?

» A is non-symmetric, rows normalized to 1.
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Self-attention Overview
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https://github.com/rasbt/https://github.com/rasbt/LLMs-from-scratch

Self-attention Step-by-Step
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https://github.com/rasbt/https://github.com/rasbt/LLMs-from-scratch

Self-attention Step-by-Step

The second input token serves as the
/ current input vector to create the query
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This is the value vector corresponding to the first input token obtained via
matrix multiplication between the weight matrix W, and input token W
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https://github.com/rasbt/https://github.com/rasbt/LLMs-from-scratch

Self-attention Step-by-Step
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https://github.com/rasbt/https://github.com/rasbt/LLMs-from-scratch

Self-attention Step-by-Step
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https://github.com/rasbt/https://github.com/rasbt/LLMs-from-scratch

Self-attention Step-by-Step
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https://github.com/rasbt/https://github.com/rasbt/LLMs-from-scratch

Self-attention - Mathematical Formulation
Self-attention is a function f : X — Z with notation:
» Input matrix X € R/*% and output/context matrix Z € IR/*out
» Sequence length /
» Input features (per element, e.g. token) dj, and output features dy; (often dj, = dout)
> Trainable parameters: Wq, Wy, W, € IR%n> dout
Computation steps
» Query matrix @ = XWg,
> Key matrix K = XW
» Value matrix V= XW,

» Attention score matrix (normalized by dimension) from query and key S = %
Sij .
> Attention matrix (normalization of S) S) A; ; = softmax(S;) = Z/eiles,c with A; ; as
colc=1 !

element of A in row /, column j.
» Output (context) matrix: Z = AV
If not noted differently its standard matrix product.
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Why is Self-Attention so Useful?

Self-attention is a parametric model for within-sequence interactions that works well in
practice.
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Why is Self-Attention so Useful?

Self-attention is a parametric model for within-sequence interactions that works well in
practice.

» Flexible interactions over time: Without being a true time-series model like recurrent
neural networks, all sequence elements can interact even when far apart.
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» Parallel processing: Parallel computation of the entire sequence is possible, unlike
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connected feed-forward neural network with inputs of dimension / x d. The
parameter count does not depend on sequence length /.
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Why is Self-Attention so Useful?

Self-attention is a parametric model for within-sequence interactions that works well in
practice.
» Flexible interactions over time: Without being a true time-series model like recurrent
neural networks, all sequence elements can interact even when far apart.

» Parallel processing: Parallel computation of the entire sequence is possible, unlike
recurrent neural networks, which require sequential processing.

» Parameter efficiency: More parameter-efficient compared to, for example, a fully
connected feed-forward neural network with inputs of dimension / x d. The
parameter count does not depend on sequence length /.

Now, let’'s combine Self-Attention with feed-forward neural networks to build our
language modeling architecture: the Transformer.
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Self-attention and Transformers

Transformers
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Which Transformer are we talking about?

AN
SFORMER
%ﬂ MILLION
OF STEEL

this tool.
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https://imgflip.com/memegenerator

Example transformer architecture - GPT2

GPT-2 “small” GPT-2 “large”

GPT2 model. Source
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https://github.com/rasbt/LLM-workshop-2024

Multi-head Attention
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https://github.com/rasbt/LLMs-from-scratch

Gradient Flow

Gradient flow: the ability to consistently receive reliable gradient information at each part
of the network to train parameters (even if very deep).

» Good flow: Most activations are close to the sensitive region of the non-linear loss
function (e.g. Relu or Sigmoid around 0) and outputs are not large.

» Bad flow: Large variance and non-zero mean of activations lead to vanishing or
exploding gradients (main issue of recurrent neural networks).
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Transformer Tricks to Improve Gradient Flow
Transformers add components to improve gradient flow:

» Residual/skip connections: Add inputs of previous layers to output of current layer to
allow.

» Layer normalization
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v E R are learned weights,

B e R is the learned bias,

%; € RY is the normalized output for token (input) ¢,

X; € RY is the input vector for token (input) ¢,

ut € R is the mean of the input activations for token t over d features.
at2 € R is the variance of the input activations for token ft,

€ is a small constant added for numerical stability,

® denotes element-wise multiplication.
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Dropout means randomly setting some outputs to O during training (regularization).

Transformer Tricks to Improve Gradient Flow (cont’d)

/

o

(b) After applying dropout.

Dropout Source

Standard Neural Net
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https://paperswithcode.com/method/dropout

Transformers
A transformer is a function f : X 4, + 2y g, to transform embedding spaces.

18/22



Transformers
A transformer is a function f : X 4, + 2y g, to transform embedding spaces.
» Original architecture introduced in Vaswani et al. (2023).

» Main component: k transformer blocks which are built from:
» Multi-head self-attention with n heads.

» Mulit-layer perceptron (MLP): 2 layers, with fan-out (e.g. d x 4 neurons) and fan-in (back
to d neurons).

» Layer normalization
» Residual connections

» Dropout and attention dropout.
» Same MLP is applied for each token, on input dimension d (not / x d!).

» Interactions only modelled by multi-head self-attention (few parameters).
18/22



Transformers (cont'd)
A transformer is a function f : X 4, + 2y g, to transform embedding spaces.
» Input goes sequentiallysequentially through each transformer block and is passed to
next block(passed to next block). Always maps back to the same dimensionality same
dimensionality (by choice of dj, = d,u, but could be fully flexible).

» Parameters depend on d, number of attention heads in each multi-head attention
mechanism, MLPs dimension. E.g. BERT with 110/340 Million, Llama with 65 Billion,
GPT4 with 1.8 Trillion.

» Parallel processing for entire sequence at once possible.
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https://poloclub.github.io/transformer-explainer/

Transformers (cont'd)
A transformer is a function f : X 4, + 2y g, to transform embedding spaces.
» Input goes sequentiallysequentially through each transformer block and is passed to
next block(passed to next block). Always maps back to the same dimensionality same
dimensionality (by choice of dj, = d,u, but could be fully flexible).

» Parameters depend on d, number of attention heads in each multi-head attention
mechanism, MLPs dimension. E.g. BERT with 110/340 Million, Llama with 65 Billion,
GPT4 with 1.8 Trillion.

» Parallel processing for entire sequence at once possible.

» Architecture variants
» Encoder-only models (e.g., BERT) aim to (only) find valuable latent text representations
(but could also generate text).
» Decoder-only models (e.g., GPT) aim to do autoregressive text generation (but also has
valuable latent text representations).
» Encoder-decoder models (e.g., BART) do both.

Link to an amazing visualization for attention and the GPT-2 model architecture. )2


https://poloclub.github.io/transformer-explainer/

Configuration of GPT-2

GPT-2 model configuration file that defines architecture from Huggingface model.GPT-2
model configuration file that defines architecture from Huggingface model.
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https://github.com/huggingface/transformers/blob/v4.45.1/src/transformers/models/gpt2/configuration_gpt2.py##L30
https://github.com/huggingface/transformers/blob/v4.45.1/src/transformers/models/gpt2/configuration_gpt2.py##L30

Questions ?
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